


The Knot Book 
An Elementary Introductio n 

to the Mathematical Theory of Knots 



This page intentionally left blank



The Knot Boo k 
An Elementary Introductio n 

to the Mathematical Theory of Knots 

Colin C Adams 

American Mathematical Society 
Providence , Rhod e  Islan d 



Originally publ ishe d b y W . H . Freema n an d Compan y 
I l lustrat ions b y Chris t in e Heinit z an d T h o m a s Banchof f excep t a s note d 

2000 Mathematics  Subject  Classification.  P r imar y 57-01 , 57Mxx , 57M25 , 57M27 , 57M50 . 

For addi t iona l informatio n an d upda te s o n th i s book , visi t 
w w w . a m s . o r g / b o o k p a g e s / k n o t 

Library o f Congres s Cataloging-in-Publicat io n Dat a 

Adams, Coli n Conrad . 
The kno t book : a n elementar y introductio n t o th e mathematica l theor y o f knots / Coli n C . 
Adams, 

p. cm . 
"Originally publishe d b y W.H . Freema n an d Company.. . reprinted wit h correction s i n 200 4 
by th e America n Mathematica l Society"-T.p . verso . 
Includes bibliographica l references . 
ISBN 0-8218-3678- 1 (acid-fre e paper ) 
1. Kno t theory . I . Title . 

QA612.2.A33 200 4 
514'. 2242-dc22 200405442 9 

Copying an d reprinting . Individua l reader s o f thi s publication , an d nonprofi t librarie s 
acting fo r them , ar e permitte d t o mak e fai r us e o f the material , suc h a s t o cop y a  chapte r fo r us e 
in teachin g o r research . Permissio n i s grante d t o quot e brie f passage s fro m this'publicatio n i n 
reviews, provide d th e customar y acknowledgmen t o f th e sourc e i s given . 

Republication, systemati c copying , o r multipl e reproductio n o f an y materia l i n thi s publicatio n 
is permitte d onl y unde r licens e fro m th e America n Mathematica l Society . Request s fo r suc h 
permission shoul d b e addresse d t o th e Acquisition s Department , America n Mathematica l Society , 
201 Charle s Street , Providence , Rhod e Islan d 02904-229 4 USA . Request s ca n als o b e mad e b y 
e-mail t o reprint-permission@ams.org . 

© 1994 , 200 1 held b y th e America n Mathematica l Society . Al l right s reserved . 
Reprinted wit h correction s i n 200 4 b y th e America n Mathematica l Society . 

The America n Mathematica l Societ y retain s al l right s 
except thos e grante d t o th e Unite d State s Government . 

Printed i n th e Unite d State s o f America . 

@ Th e pape r use d i n thi s boo k i s acid-fre e an d fall s withi n th e guideline s 
established t o ensur e permanenc e an d durability . 

Visit th e AM S hom e pag e a t http://www.ams.org / 

10 9  8 7  6  5  4  3  2  1 5 1 4 1 3 1 2 1 1 1 0 



This book is dedicated to my parents, Courtney and Jerry Adams; 
my spouse, Amelia Adams; and our dogs, Wheatie and Bucky; 
who provide the comic relief. 



This page intentionally left blank



Contents 

G ^ 

Preface xi 

Chapter 1 

Introduction 1 
1.1 Introductio n 1 
1.2 Compositio n of Knots 7 
1.3 Reidemeiste r Moves 1 2 
1.4 Link s 1 6 
1.5 Tricolorabilit y 2 2 
1.6 Knot s and Sticks 2 7 

Chapter 2 

Tabulating Knots 3 1 
2.1 Histor y of Knot Tabulation 3 1 
2.2 Th e Dowker Notation for Knots 3 5 
2.3 Conway' s Notation 4 1 
2.4 Knot s and Planar Graphs 5 1 



viii Content s 

Chapter 3 

Invariants of Knots 5 7 
3.1 Unknottin g Number 5 7 
3.2 Bridg e Number 6 4 
3.3 Crossin g Number 6 7 

Chapter 4 

Surfaces and Knots 7 1 
4.1 Surface s without Boundary 7 1 
4.2 Surface s with Boundary 8 7 
4.3 Genu s and Seifert Surfaces 9 5 

Chapter 5 

Types of Knots 10 7 
5.1 Toru s Knots 10 7 
5.2 Satellit e Knots 11 5 
5.3 Hyperboli c Knots 11 9 
5.4 Braid s 12 7 
5.5 Almos t Alternating Knots 13 9 

Chapter 6 

Polynomials 14 7 
6.1 Th e Bracket Polynomial and the Jones Polynomial 14 7 
6.2 Polynomial s of Alternating Knots 15 6 
6.3 Th e Alexander and HOMFLY Polynomials 16 5 
6.4 Amphicheiralit y 17 6 

Chapter/ 

Biology, Chemistry and Physics 18 1 
7.1 DN A 18 1 
7.2 Synthesi s of Knotted Molecules 19 5 
7.3 Chiralit y of Molecules 20 1 
7.4 Statistica l Mechanics and Knots 20 5 



Contents i x 

Chapter 8 

Knots, Links, and Graphs 21 5 
8.1 Link s in Graphs 21 5 
8.2 Knot s in Graphs 22 2 
8.3 Polynomial s of Graphs 23 1 

Chapter 9 

Topology 24 3 
9.1 Kno t Complements and Three-Manifolds 24 3 
9.2 Th e Three-Sphere and Lens Spaces 24 6 
9.3 Th e Poincare Conjecture, Dehn Surgery, and the 

Gordon-Luecke Theorem 25 7 

Chapter 10 

Higher Dimensional Knotting 26 5 
10.1 Picturin g Four Dimensions 26 5 
10.2 Knotte d Spheres in Four Dimensions 27 2 
10.3 Knotte d Three-Spheres in Five-Space 27 3 

Knot Jokes and Pastimes 276 

Appendix: 279 

Table of Knots, Links, and Knot and Link Invariants 

Suggested Readings and References 291 

Index 303 

Corrections to the 2004 AMS Printing 307 



This page intentionally left blank



Preface 

G ^ 

Mathematics i s a n incredibl y excitin g an d creativ e fiel d o f endeavor . Ye t 
most peopl e neve r se e i t tha t way . Nonmathematicians to o ofte n assum e 
that w e mathematicians si t around talkin g abou t wha t Newto n di d thre e 
hundred year s ag o o r calculatin g a  coupl e o f extr a millio n digit s o f IT. 
They do not realize that more new mathematics is being created now tha n 
at any other time in the history of humankind . 

Explaining th e fiel d o f kno t theor y i s a  particularl y effectiv e wa y t o 
dispel thi s misconception . Her e i s a  field  tha t i s over on e hundre d year s 
old, and ye t some of the most exciting results have occurred i n the last fif -
teen years . Easil y state d ope n question s stil l abound , an d on e ca n ge t a 
taste for wha t i t is like to do research very quickly . The other tremendou s 
advantage tha t kno t theor y ha s ove r man y othe r fields  o f mathematic s i s 
that much of the theory can be explained a t an elementary level . One does 
not nee d t o understand th e complicate d machiner y o f advance d area s of 
mathematics to prove interesting results. 

My hope is that this book wil l excite people about mathematics—tha t 
it will motivate the m t o continue t o explore other relate d area s o f mathe -

xi 
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matics an d t o proceed t o such topic s a s topology, algebra , differentia l ge -
ometry, and algebraic topology. 

Unfortunately, mathematic s i s often taugh t a s if the only goa l were t o 
pass a  body o f information fro m on e person t o th e next . Although thi s i s 
certainly a n importan t goal , it is essential t o teach a n appreciation fo r th e 
beauty o f mathematic s an d a  sense o f th e excitemen t o f doing  mathemat-
ics. Once reader s ar e hooked , the y wil l fil l i n th e detail s themselves , an d 
they will go a lot farther an d learn a lot more. 

Who, then , i s thi s boo k for ? It i s aime d a t anyon e wit h a  curiosit y 
about mathematics . I hope people will pick up thi s book and star t readin g 
it on their own. I also hope that they will do the exercises: the only way to 
learn mathematic s i s t o d o it . Som e o f th e exercise s ar e straightforward ; 
others tak e som e thought . Th e ver y hardes t ar e starre d an d ca n be a  bi t 
more challenging. 

Scientists wit h primar y interest s i n physic s o r biochemistr y shoul d 
find th e applications of knot theory to these fields  particularly fascinating . 
Although thes e application s hav e onl y bee n discovere d recently , alread y 
they have had a huge impact . 

This boo k ca n b e an d ha s bee n use d effectivel y a s a  textboo k i n 
classes. With the exception of a  few spots , the book assumes only a  famil -
iarity with hig h schoo l algebra . I  have als o given talk s o n selecte d topic s 
from thi s book to high school students and teachers , college students, and 
students as young as seventh graders . 

The first si x chapters of the book are designed t o be read sequentially . 
With the exception that Section 8.3 depends o n Section 7.4 , the remainin g 
four chapter s ar e independen t an d ca n b e rea d i n an y order . Th e topic s 
chosen fo r thi s boo k ar e no t th e standar d topic s tha t on e woul d se e i n a 
more advance d treatis e o n kno t theory . Certainl y th e mos t glarin g omis -
sion i s any discussio n o f th e fundamental group . My desir e t o make thi s 
book mor e interestin g an d accessibl e t o a n audienc e withou t advance d 
background ha s precluded such topics. 

The choice of topics has been made by looking fo r area s tha t ar e eas y 
to understan d withou t muc h background , ar e exciting , an d provid e op -
portunities for new research. Some of the topics such as almost alternatin g 
knots ar e s o ne w tha t littl e researc h ha s ye t bee n don e o n them , leavin g 
numerous open questions. 

Although I  dre w o n man y source s whil e writin g thi s book , I  relie d 
particularly heavil y o n the writings and approache s o f Joan Birman, John 
Conway, Camero n Gordon , Vaugha n Jones , Loui s Kauffman , Raymon d 
Lickorish, Ke n Millett , Joze f Przytycki , Dal e Rol f sen, Dewit t Sumners , 
Morwen Thistlethwaite, and William Thurston . 

I would lik e to thank al l the following colleagues , who contributed in -
numerable comment s an d suggestion s durin g th e writin g o f thi s book , 
and correcte d man y o f the mistakes therein : Daniel Allcock, Thomas Ban -
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choff, Richar d Bedient , Jaso n Behrstock , Timoth y Bremer , Patric k Calla -
han, J. Scott Carter , Peter Cromwell , Alan Durfee , John Free , Dennis Gar -
ity, Ja y Goldman , Camero n Gordon , Joe l Hass , Jame s Hoste , Vaugha n 
Jones, Taiz o Kanenobu , Donseu k Kim , Edwar d Lainger , Fran k Morgan , 
Hitoshi Murakami , M . S . E l Naschie , Monic a Nicolau , Joze f Przytycki , 
Martin Reuter , Joseph O'Rourke, Alan Reid, Yongwu Rong , Brian Sander -
son, Dewitt Sumners , Morwen Thistlethwaite , Abigail Thompson, Gerar d 
Venema, and Jeffrey Weeks . The filmstrip forma t employe d i n the figure s 
in Chapter 1 0 originated with J. Scott Carter. 

I als o woul d lik e t o than k al l th e student s wh o hav e contribute d t o 
this book. I was originally motivated to write this book through my partic-
ipation i n th e SMAL L Undergraduat e Researc h Projec t a t William s Col -
lege. Eac h summe r sinc e 1988 , between fiftee n an d twenty-fiv e student s 
have com e t o William s Colleg e t o wor k o n mathematica l researc h wit h 
five t o eigh t facult y ove r a  ten-wee k period , throug h fund s provide d b y 
the Nationa l Scienc e Foundation , th e Ne w Englan d Consortiu m fo r Un -
dergraduate Scienc e Education , William s College , an d othe r grantin g 
agencies. My group of students has usually worked o n knot theory. Every 
summer, I  would find  mysel f teachin g them the same material over again , 
without a  reference a t the right level . It was suc h beautiful materia l tha t I 
decided i t would be worth writing a  book. Although thi s list does not in -
clude al l th e student s wh o hav e contribute d t o th e book , I  would lik e t o 
thank the following: Aaron Abrams, Charene Arthur , David Biddle , Bevin 
Brennan, Jeffre y Brock , Dere k Bruneau , Joh n Bugbee , Elizabet h Camp , 
Mark Chrisman , Ti m Comar , Tara d e Souza , Rya n Dorman , Keit h Faigin , 
Thomas Fleming , Kerryan n Foley , Josep h Francis , Eri c Furstenberg , 
Thomas Graber , Debora h Greilsheimer , Caro l Gwosdz , Lis a Harrison , 
Daniel Heath , Marti n Hildebrand , Hug h Howards , Am y Huston , Ann e 
Joseph, Lis a Klein , Katherin e Kollett , Jonatha n Kravis , Joshu a Kucera , 
Michael Levin , Ji e Li , John MacEachern , Lotha r Mans , Joh n Mynttinen , 
Sang Pahk , Katherin e Paur , Sa m Payne , Davi d Pesikoff , Jessic a Polito , 
Scott Reynolds, Dan Robb , Jodi Schneider, William Sherman , John Terilla , 
Ari Turner, Pinnarat Vongsinsirikul, Edward Welsh, and Alex Woo. 

Additional hel p cam e fro m Jeremia h Lyons , Marissa Barschdorf , an d 
Pier Gustafson , Christin e Hastings , an d Me l Slugbate . Christin e Heinit z 
and Thomas Banchoff deserv e specia l credit for thei r work o n the illustra -
tions. 

Colin C. Adams 
February 1994 
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Introduction 

1 # 1 Introductio n 

Take a piece of string. Tie a knot in it. Now glue the two ends of the string 
together t o form a  knotted loop . The result i s a string tha t ha s no loose 
ends and that is truly knotted. Unless we use scissors, there is no way that 
we can untangle this string. (See Figure 1.1.) 

Figure 11 Formin g a knot from a piece of string. 
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A knot is just such a knotted loop of string, except that we think of th e 
string a s havin g n o thickness , it s cross-sectio n bein g a  singl e point . Th e 
knot is then a closed curve in space that does not intersect itself anywhere . 

We will not distinguish between the original closed knotted curv e an d 
the deformations o f tha t curv e through spac e that do not allo w th e curv e 
to pass throug h itself . All of thes e deforme d curve s wil l be considered t o 
be th e sam e knot . W e think o f th e kno t a s i f i t wer e mad e o f easil y de -
formable rubber . 

Figure 1.2 Deformin g a  knot doesn't change it. 

In thes e picture s o f knot s (Figur e 1.2 ) on e sectio n o f th e kno t passe s 
under anothe r sectio n a t each crossing. The simplest kno t o f al l is just th e 
unknotted circle , which w e cal l th e unkno t o r th e trivia l knot . Th e nex t 
simplest kno t i s calle d a  trefoi l knot . (Se e Figur e 1.3. ) Bu t ho w d o w e 
know thes e ar e actually  differen t knots ? Ho w d o w e kno w tha t w e 
couldn't untangl e th e trefoi l kno t int o th e unkno t withou t usin g scissor s 
and glue , if we played with it long enough? 

o <e> 
a b 

Figure 13 (a ) The unknot, (b ) A trefoil knot . 

Certainly, if you make a trefoil kno t out of string and tr y untangling i t 
into the unknot, you will believe very quickly that it can't be done. But we 
won't b e abl e to prove i t unti l we introduc e tricoloratio n o f knot s i n Sec-
tion 1.5 . 

In th e tabl e a t th e bac k o f th e book , ther e ar e numerou s picture s o f 
knots. All of these knots are known t o be distinct . I f we made an y on e of 
them ou t o f string , w e woul d no t b e abl e t o defor m i t t o loo k Uk e an y 
of th e others . On th e othe r hand , her e i s a  pictur e (Figur e 1.4 ) o f a  kno t 
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that i s actuall y a  trefoi l knot , eve n thoug h i t look s completel y differen t 
from th e previous picture of a trefoil. 

Figure 1.4 A  nonstandar d pictur e of the trefoil knot . 

Exercise 1.1  Mak e thi s kno t ou t o f strin g an d the n rearrang e i t to sho w 
that i t is the trefoi l knot . (Actually , an electrica l extensio n cor d work s 
better than string. You can tie a knot in it and then plug i t into itself i n 
order t o form a  knot. A third optio n i s to draw a  sequence o f picture s 
that describ e th e deformatio n o f th e knot . Thi s i s particularly eas y t o 
do o n a  blackboard , wit h chal k an d eraser . A s yo u defor m th e knot , 
you ca n simply eras e an d redra w th e appropriat e section s o f th e pic -
ture.) 

There ar e many differen t picture s o f th e sam e knot . In Figure 1.5 , w e 
see three different picture s of a new knot, called the figure-eight  knot . We 
call such a picture of a knot a projection of the knot. 

(P®(p 
Figure 1.5 Thre e projections of the figure-eight knot . 

The place s wher e th e kno t crosse s itsel f i n th e pictur e ar e calle d th e 
crossings o f th e projection . W e sa y tha t th e figure-eigh t kno t i s a  four -
crossing kno t becaus e ther e i s a  projectio n o f i t wit h fou r crossings , an d 
there are no projections of it with fewer than four crossings . 

If a  kno t i s t o b e nontrivial , the n i t ha d bette r hav e mor e tha n on e 
crossing in a projection. Fo r if it only has one crossing, then the four end s 
of the single crossing mus t be hooked u p i n pairs in one of the four way s 
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shown i n Figur e 1.6 . An y othe r projectio n wit h on e crossin g ca n b e de -
formed t o look like one of these without undoing the crossing. But each of 
these is clearly a trivial knot, as we can then untwist the single crossing. 

00 ©  i  (5) 
Figure 1.6 One-crossin g projections . 

Exercise 1.2  Sho w that there are no two-crossing nontrivial knots. 

Much o f kno t theor y i s concerne d wit h tellin g whic h knot s ar e th e 
same an d whic h ar e different . On e simplifie d versio n o f thi s questio n i s 
the following: "I f we have a  projection o f a  knot, can we tel l whether i t is 
the unknot?" 

Certainly, i f w e pla y wit h a  strin g mode l o f th e kno t fo r a  whil e an d 
we d o manag e t o untangle i t completely , i t is the unknot . Bu t what i f w e 
play with i t for tw o weeks and w e stil l haven't untangled it ? It still migh t 
be th e unkno t an d fo r al l we know , five mor e minute s o f wor k migh t b e 
enough to untangle it. So we can't quit . 

But in fact, there is a way to decide if a given projection of a knot is the 
unknot. In 1961, Wolfgang Hake n came up with a  foolproof procedur e fo r 
deciding whether o r not a  given knot i s the unknot (se e Haken, 1961) . Ac-
cording to his theory, we should be able to give our projection o f a knot t o 
a computer (ho w to give a projection t o computers is discussed in Chapte r 
2), and th e compute r woul d ru n th e algorithm an d tel l us whether o r no t 
the give n kno t wa s th e unknot . Unfortunately , eve n thoug h Hake n cam e 
up wit h hi s algorithm ove r 3 0 years ago , it is so complicated tha t n o on e 
has ever written a computer program to implement it . 

c&qjnsofoed Problem 

Write a computer progra m tha t can tell whether a  knot that i t is given 
is the unknot. (Thi s is a difficult proble m tha t requires a  complete un -
derstanding o f Haken's algorithm . But beware: His paper i s 130 pages 
long!) 

Aside: In 1974 , Haken an d Kennet h Appe l solve d on e o f th e mos t fa -
mous problem s i n mathematics , th e Four-Colo r Theorem . The y prove d 
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that if you want to make a map, you only need t o use four color s to make 
sure tha t n o tw o countrie s o f th e sam e colo r touc h eac h othe r alon g a n 
edge. This was the first proo f o f a major theore m tha t used computer s ex-
tensively t o enumerat e th e thousand s o f case s tha t nee d t o be examined . 
(See Appel and Haken, 1977). 

Why should anyone be interested in knots? What's so important abou t 
being abl e t o tel l whether a  tangled-up loo p o f strin g i s truly tangle d o r 
can in fact be untangled without cutting and gluing ? 

Much of the early interest in knot theory was motivated by chemistry . 
In the 1880s , it was believed tha t a  substance calle d ethe r pervade d al l of 
space. In an attemp t t o explain th e differen t type s o f matter , Lord Kelvi n 
(William Thomson , 1824-1907 ) hypothesize d tha t atom s wer e merel y 
knots in the fabric o f this ether. Different knot s would the n correspond t o 
different element s (Figure 1.7) . 

This convince d th e Scottis h physicis t Pete r Guthri e Tai t (1831-1901 ) 
that if he could list all of the possible knots, he would be creating a table of 
the elements. He spent many years tabulating knots . At the same time, an 
American mathematician named C . N. Little was working on his own tab-
ulations for knots. 

He? Pb ? Ni ? 

Figure 1.7 Atom s are knotted vortices? 

Unfortunately, Kelvi n wa s wrong . I n 1887 , the Michelson-Morle y ex -
periment demonstrate d tha t ther e was n o ethe r t o knot . A  more accurat e 
model o f atomi c structur e appeare d a t th e en d o f th e nineteent h centur y 
and chemist s lost interest in knots for the next 10 0 years. But in the mean-
time, mathematician s ha d becom e intrigue d wit h knots . A  centur y o f 
work on the mathematical theory of knots followed . 

Interestingly enough, in the 1980s , biochemists discovere d knottin g i n 
DNA molecules. Concurrently, synthetic chemists realized it might be pos-
sible to creat e knotted molecules , where th e typ e o f kno t determine d th e 
properties o f th e molecule . A  mathematica l fiel d tha t wa s bor n ou t o f 
a misguide d mode l fo r atom s ha s turne d ou t t o hav e severa l significan t 
applications t o chemistr y an d biology . W e discus s thes e application s i n 
Chapter 7. 
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Knot theor y i s a  subfield o f a n are a o f mathematic s know n a s topol -
ogy. Topology i s the stud y o f th e propertie s o f geometri c object s tha t ar e 
preserved unde r deformations . Jus t a s w e thin k o f th e knot s a s bein g 
made of deformable rubber , so we think of the more general geometric ob-
jects in topology as deformable. Fo r instance, a topologist does not distin -
guish a cube from a  sphere, since a cube can be deformed int o a sphere by 
rounding of f th e eight corner s and smoothin g the twelve edges , as in Fig-
ure 1.8 . 

Figure 1.8 A  cub e and a sphere are the same in topology. 

Topology i s one o f th e majo r area s o f researc h i n mathematic s today . 
Work in knot theory has led to many important advance s in other areas of 
topology. We discuss some of these connections in Chapter 9. 

In this book, we investigate the mathematical theory of knots. The em-
phasis i s on curren t researc h i n kno t theory . Unlike th e situation i n som e 
other field s o f mathematics , many o f th e unsolved problem s i n kno t the -
ory are easily stated. Much of the theory is accessible to someone withou t 
any background i n upper-level mathematics . There are open problem s i n 
the field tha t can be attacked and perhaps solved by nonexperts. 

The best way to learn any kind o f mathematics i s by doing mathema -
tics, not just by reading about what other s have done. Therefore, through -
out this book there are numerous open problems in knot theory. Try them! 
Think t o yourself , "Ho w woul d I  solv e thi s problem? " Mayb e yo u ca n 
come up with the essential new idea and discover the solution. 

Exercise 1.3  Us e string (o r an extension cord) to show that the followin g 
knot is the unknot . 
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Exercise 1.4  Sho w tha t an y kno t ha s a  projectio n wit h ove r 100 0 cross -
ings. 

Certain types of knots are particularly interesting . One such type is an 
alternating knot . A n alternatin g kno t i s a  knot wit h a  projection tha t ha s 
crossings that alternate between over and under a s one travels around th e 
knot i n a  fixed direction . The trefoil kno t in Figure 1. 3 is alternating. So is 
the figure-eight kno t in Figure 1.5, since the two projections of it on the lef t 
and middle are alternating. 

Exercise 1.5  Choos e crossing s a t eac h verte x i n Figur e 1. 9 t o mak e th e 
resulting knot alternating . 

Figure 1.9 A  projectio n without over - and undercrossings . 

Exercise 1.6*  Show that by changing the crossings from ove r to under o r 
vice versa, any projection o f a  knot can be made into the projection o f 
an alternatin g knot . (Thi s isn't a s easy a s i t might seem . How d o yo u 
know your procedure wil l always work?) In a projection wit h n  cross-
ings, what is the maximum number o f crossings that would have to be 
changed in order to make the knot alternating ? 

Exercise 1.7*  Show tha t by changin g som e o f th e crossing s fro m ove r t o 
under or vice versa, any projection o f a knot can be made into a projec-
tion of the unknot . 

1.2 Compositio n of Knots 
Given tw o projections o f knots , we ca n define a  new kno t obtaine d b y re -
moving a  small arc from eac h knot projection an d then connecting the fou r 
endpoints by two new arcs as in Figure 1.10. We call the resulting knot th e 
composition of the two knots. If we denote the two knots by the symbols / 
and K,  the n thei r compositio n i s denote d b y J#K.  We assum e tha t th e 

* Exercise with asterisk denotes more difficult problem . 
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/ K  J#K 

Figure 1.10 Th e composition J#K of two knots / and K. 

two projection s d o no t overlap , an d w e choos e th e tw o arc s tha t w e re -
move t o be o n th e outsid e o f eac h projectio n an d t o avoi d an y crossings . 
We choose th e two ne w arc s so they d o no t cros s either th e origina l kno t 
projections or each other (Figure 1.11). 

New unwanted crossin g 

^ New unwanted crossin g 

Figure 1.11 Not  the composition of / and K. 

We call a knot a  composite knot if it can be expressed a s the composi -
tion of two knots, neither o f which is the trivial knot. This is in analogy t o 
the positive integers , where we cal l an integer composit e i f i t is the prod -
uct of positive integers, neither of which is equal to 1. The knots that make 
up the composite knot are called factor knots. 

Notice that if we take the composition of a knot K  with the unknot, the 
result i s agai n K,  jus t a s whe n w e multipl y a n intege r b y 1 , we ge t th e 
same intege r bac k agai n (Figur e 1.12) . If a  knot i s not th e compositio n o f 

K unkno t K 

Figure 1.12 K#(unknot ) is just K. 
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any two nontrivial knots, we call it a prime knot. Both the trefoil knot an d 
the figure-eight kno t are prime knots, although this is not obvious. 

For the knot J#K in Figure 1.10 , i t is clearly composite. We constructed 
it to be. But how abou t the knot i n Figure 1.13 ? I s it composite? I n fact , i t 
is. I f yo u mak e i t ou t o f strin g an d pla y aroun d wit h th e knot , yo u ca n 
eventually get it into a projection that shows that it is composite. 

Figure 1.13 A  potentially composite knot . 

Here's a  strange r question . I s the unkno t composite ? Obviously , fro m 
the pictur e i n Figur e 1.3a , i t doesn' t loo k composite . Bu t maybe ther e i s a 
way to tangle the unknot u p s o that we ge t a  projection o f i t tha t makes i t 
obviously a composite knot. That is, perhaps there is a picture of the unknot 
that has a nontrivial knot on the left, a  nontrivial knot on the right, and tw o 
strands of the knot joining them (Figure 1.14). Maybe that part of the projec-
tion corresponding to the knot on the right somehow untangles that part of 
the projection corresponding to the knot on the left, resulting in the unknot . 

Figure 1.14 Coul d this untangle to be the unknot? 

It's somewha t disconcertin g t o realize tha t i f th e unknot wer e a  com -
posite knot, then every knot would b e a composite knot . Since every kno t 
is the composition of itself with the unknot, every knot would be the com-
position of itself wit h the nontrivial factor knot s that made up the unknot . 

In fact, much to our relief, the unknot is not a composite knot. There is 
no wa y t o tak e th e compositio n o f tw o nontrivia l knot s an d ge t th e un -
knot. We use surfaces t o show thi s in Section 4.3. We can think o f thi s re-
sult a s analogou s t o th e fac t tha t th e intege r 1  is no t th e produc t o f tw o 
positive integers , each greate r tha n 1 . Moreover, just a s an integer factor s 
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into a unique set of prime numbers, a composite knot factors into a unique 
set of prime knots. 

The appendix table, which contains projections o f knots, and is located 
at th e bac k o f th e book , list s onl y th e prim e knot s an d doe s no t includ e 
any composit e knots . It's like a  table o f prim e numbers . Although al l th e 
positive integers aren't listed, any integer can be constructed by taking the 
appropriate product of the primes that are listed. 

Exercise 1.8  Usin g th e appendi x table , identif y th e facto r knot s tha t 
make up the composite knot in Figure 1.15 . 

Figure 1.15 A  composit e knot. 

Exercise 1.9  Sho w that the knot in Figure 1.16 is composite. 

Figure 1.16 Anothe r composite knot. 

One way tha t compositio n o f knots does diffe r fro m multiplicatio n o f 
integers is that there is more than one way to take the composition o f tw o 
knots. We have a  choic e of where w e remov e th e ar c from th e outsid e of 
each projection . Wil l this choic e affec t th e outcome ? Surprisingly , th e an -
swer i s yes. It is often possibl e to construct tw o differen t composit e knot s 
from th e same pair of knots / and K. 

We firs t nee d t o pu t a n orientatio n o n ou r knots . A n orientatio n i s 
defined b y choosing a direction to travel around th e knot. This direction is 
denoted b y placing coherently directed arrow s along the projection o f th e 
knot in the direction of our choice. We then say that the knot is oriented. 

When w e the n for m th e compositio n o f tw o oriente d knot s /  an d K, 
there are two possibilities. Either the orientation o n / matche s the orienta -
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tion on K in J#K, resulting in an orientation fo r J#K, or the orientation on / 
and K  do no t matc h u p i n J#K.  Al l o f th e composition s o f th e tw o knot s 
where th e orientation s d o matc h u p wil l yiel d th e sam e composit e knot . 
All o f th e composition s o f th e tw o knot s wher e th e orientation s d o no t 
match u p wil l als o yiel d a  singl e composit e knot ; however , i t i s possibl y 
distinct fro m th e composit e kno t generate d whe n th e orientation s d o 
match up (Figur e 1.17). 

KS> ®W  %p 
a b  c 

Figure 1.17 (a ) Orientation s match , (b ) Orientation s match , (c ) Orienta -
tions differ . 

To convince ourselves that the first two compositions in Figure 1.17 re-
ally d o giv e u s th e sam e knot , w e ca n shrin k /  dow n i n th e firs t pictur e 
and then slide it around K  until we obtain the second picture (Figure 1.18). 
Although thi s wil l no t b e th e cas e i n general , i n thi s particula r example , 
the thir d compositio n i n Figur e 1.1 7 als o give s th e sam e kno t a s th e tw o 
preceding compositions . This occurs because on e of the factor knot s is in-
vertible. A knot is invertible i f it can be deformed bac k to itself s o that a n 
orientation o n i t is sent to the opposite orientation . In the case that on e of 
the tw o knot s i s invertible , sa y / , w e ca n alway s defor m th e composit e 
knot so that the orientation on K is reversed, and hence so that the orienta-
tions of / and K  always match. Therefore, there is only one composite kno t 
that we can construct from th e two knots. 

Figure 1.18 Tw o compositions that are the same. 

The first knot that is not invertible in the table at the end o f the book is 
the kno t 817 . Composing i t with itsel f i n th e two differen t way s produce s 
two distinct composite knots that are not equivalent (Figur e 1.19). In order 
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to determine th e possible compositions o f knots, we need t o know whic h 
knots ar e invertible . So far, no one has com e up wit h a  genera l techniqu e 
that will determine whether or not a given knot is invertible. 

Figure 1.19 Thes e tw o composit e knot s hav e th e sam e factors , bu t the y 
are distinct . 

1.3 Reidemeiste r Moves 

Suppose that we have two projections o f the same knot. If we made a knot 
out of string that modeled th e first  of the two projections, then we shoul d 
be able to rearrange the string to resemble the second projection. Knot the-
orists call the rearranging o f the string, that is, the movement o f the strin g 
through three-dimensiona l spac e without lettin g i t pass through itself , an 
ambient isotopy . Th e wor d "isotopy " refer s t o th e deformatio n o f th e 
string. The wor d "ambient " refer s t o th e fac t tha t th e strin g i s being de -
formed throug h th e three-dimensional spac e that i t sits in. Note that in a n 
ambient isotopy, we are not allowed to shrink a part of the knot down to a 
point, as in Figure 1.20, in order to be rid of the knot. It's easiest to think of 
a kno t mad e o f string . Jus t a s yo u can' t ge t ri d o f a  kno t i n a  strin g b y 
pulling it tighter and tighter , so an ambient isotopy doesn't allow us to get 
rid of a knot in this manner . 

Figure 1.20 W e are not allowed to shrink part of the knot to a point. 

A deformatio n o f a  knot projectio n i s called a  planar isotopy i f i t de -
forms th e projection plan e as if it were made of rubber with the projectio n 
drawn upo n i t (Figur e 1.21) . The word "planar " i s used her e because w e 
are onl y deformin g th e kno t withi n th e projectio n plane . Kee p i n min d 
that this is highly deformable rubber . 
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Figure 1.21 Plana r isotopies. 

A Reidemeiste r mov e i s one o f thre e way s t o chang e a  projection o f 
the knot tha t will  change the relation between the crossings. The first Rei-
demeister move allow s u s t o put i n o r tak e ou t a  twist i n the knot , a s i n 
Figure 1.22 . We assume tha t the projection remain s imchanged excep t fo r 
the change depicte d i n the figure. The second Reidemeister move allow s 
us t o either ad d tw o crossings o r remove tw o crossings a s in Figure 1.23 . 
The third Reidemeister move allows us to slide a strand o f the knot fro m 
one side of a crossing to the other side of the crossing, as in Figure 1.24 . 

OR 

Figure 1.22 Typ e I Reidemeister move. 

> 
l 
r OR > 

Figure 1.23 Typ e II Reidemeister move . 

• OR 

\ 

Figure 1.24 Typ e III Reidemeister move . 
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Notice tha t althoug h eac h o f thes e move s change s th e projectio n o f th e 
knot, it does not change the knot represented b y the projection. Each suc h 
move is an ambient isotopy. 

CD © 
Figure 1.25 Tw o projections o f the same knot . 

In 1926 , th e Germa n mathematicia n Kur t Reidemeiste r (1893-1971 ) 
proved tha t i f we have tw o distinc t projection s o f th e sam e knot , we ca n 
get from th e one projection t o the other by a  series of Reidemeister move s 
and plana r isotopies . For example , the two projection s i n Figure 1.2 5 cor -
respond t o the same knot . Therefore, accordin g t o Reidemeister , there is a 
series o f Reidemeiste r move s tha t take s us fro m th e firs t projectio n t o th e 
second. Figur e 1.2 6 show s on e serie s o f move s tha t demonstrate s thi s 
equivalence. A s anothe r example , th e figure-eigh t kno t i s know n t o b e 

QD^QNSKg)-© 
Figure 1.26 Reidemeiste r moves . 

Figure 1.27 Th e figure-eight kno t is equivalent to its mirror image. 
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equivalent t o its mirror image , that is , the knot obtaine d b y changin g ev -
ery crossin g i n th e figure-eigh t kno t t o th e opposit e crossing . I n Figur e 
1.27, w e se e th e Reidemeiste r move s tha t sho w th e equivalence . Inci -
dentally, a  kno t tha t i s equivalen t t o it s mirro r imag e i s calle d am -
phicheiral by mathematicians an d achira l by chemists. Although the kno t 
tables do not list both a knot and its mirror image, we consider them to be 
distinct knots unless the knot i s amphicheiral. More on amphicheirality i n 
Chapter 7. 

Exercise 1.10  Sho w tha t th e two projection s i n Figure 1.2 8 represen t th e 
same kno t by findin g a  series o f Reidemeiste r move s fro m on e t o th e 
other. 

c© 
Figure 1.28 Fin d the Reidemeister moves . 

The proo f tha t Reidemeiste r move s an d plana r isotop y suffic e t o ge t 
us from an y one projection o f a knot to any other projection o f that knot i s 
not particularly difficult ; however , it is technically involved, so we will not 
go into i t here . A proof appear s i n Burd e an d Zeischan g (1986) . It migh t 
now seem that the problem of determining whether two projections repre -
sent the same knot would b e easy. We just check whether o r not there is a 
sequence o f Reidemeiste r move s t o ge t u s fro m th e on e projectio n t o th e 
other. Unfortunately , ther e i s n o limi t o n th e numbe r o f Reidemeiste r 
moves tha t i t might tak e us t o ge t fro m on e projection t o the other . I f th e 
two original projections have 10 crossings each, it is conceivable that in the 
process o f performin g th e Reidemeiste r move s w e wil l hav e t o increas e 
the number o f crossings t o 1000 , before th e moves simplif y th e projectio n 
back dow n t o 1 0 crossings . Fo r instance , th e trefoi l kno t i s no t am -
phicheiral, but ther e i s no know n proo f i n term s o f Reidemeiste r moves . 
Even if we could prove that we cannot ge t from th e standard projectio n o f 
the trefoi l kno t t o it s mirro r imag e i n 1,000,000,00 7 Reidemeiste r moves , 
maybe we could do it with 1,000,000,008 moves . 

Here is an interesting example . Believe it or not, this is a projection o f 
the unknot , s o there has to be a  series o f Reidemeiste r move s tha t untan -
gles it into an unknotted circle . 

© 
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Figure 129 A  nasty unknot . 

Exercise 1.11*  Find a  sequenc e o f Reidemeiste r move s t o untangl e th e 
unknot show n i n Figur e 1.29 . (Not e tha t thi s proble m i s askin g a  lo t 
more than just showing that this knot can be untangled.) 

Exercise 1A2  Prov e tha t i n Exercis e 1.11 , i n an y sequenc e o f Reide -
meister move s that unknot th e projection wit h seven crossings in Fig-
ure 1.29 , i t i s necessary t o pas s throug h a  projectio n wit h mor e tha n 
seven crossings. 

^(Unsolved Question 

Could ther e be a  constant c  such tha t fo r an y knot K  and fo r an y tw o 
projections Pi and P2 of K, each with no more than n crossings, one can 
get fro m on e projectio n t o th e othe r b y Reidemeiste r move s withou t 
ever having more than n  +  c crossings a t any intermediate stage ? It is 
highly unlikely such a constant exists ; however, I know of no set of ex-
amples that demonstrate its nonexistence. 

Note tha t eve n i f suc h a  c  does no t exist , i t might b e true tha t th e in -
crease in the number o f crossings is never more than a  simple function o f 
n, say , th e increas e i s neve r mor e tha n 2n  + 3 or 3n 2 -n +  7. O r perhap s 
you ca n fin d a  sequenc e o f example s tha t prove s tha t th e increas e i n th e 
number o f crossing s i s sometime s greate r tha n an y functio n o f th e for m 
a.x + b, where a and b are constants. (In mathematical parlance, you woul d 
have shown that there is no linear bound on the crossing increase.) Or per -
haps there is a sequence of examples that shows that the crossing increase 
is sometimes greate r than any polynomial in n. This would prov e that th e 
crossing increase is sometimes "exponential/ ' 

1A Link s 
So far, we have restricted our attention to knots; that is to say, single knot -
ted loops. But there was no reason to say that there could only be one loop 
that we knotted . 
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A link i s a  set of knotted loop s al l tangled u p together . Two links ar e 
considered t o be the same i f we ca n deform th e one link t o the othe r lin k 
without eve r havin g an y on e o f th e loop s intersec t itsel f o r an y o f th e 
other loops in the process. Here are two projections o f one of the simples t 
links, known as the Whitehead link (Figure 1.30). 

Figure 130 Tw o projections of the Whitehead link . 

Exercise 1.13  Sho w that the two projections represent the same link. 

Since it is made up of two loops knotted with each other, we say that it 
is a  link o f tw o components . Here is another well-know n lin k with thre e 
components, called the Borromean rings (Figure 1.31) . This link is named 
after th e Borromeas, an Italian family fro m th e Renaissance tha t used thi s 
pattern of interlocking rings on their family crest . 

Figure 1.31 Th e Borromean rings. 

A kno t wil l be considere d a  lin k o f on e component . Th e tabl e a t th e 
back o f the book contain s projection s o f som e o f th e simple r links . Prett y 
much everythin g w e hav e sai d abou t knot s hold s tru e fo r links . Fo r in -
stance, i f tw o projection s represen t th e sam e link , ther e mus t b e a  se -
quence of Reidemeister move s to get from th e one projection t o the other . 

A lin k i s calle d splittabl e i f th e component s o f th e lin k ca n b e de -
formed s o that the y lie on differen t side s of a  plane in three-space . Some-
times it' s obviou s whe n a  lin k i s splittable , a s i n th e firs t lin k i n Figur e 
1.32. However, it' s often th e case that a  link is splittable, but we can' t eas -
ily tell that by looking at the projection, as in the second link in the figure . 
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Figure 1.32 Tw o splittable links. 

Exercise 1.14  Sho w that the second link is splittable. 

Most o f the links that we wil l be interested i n are nonsplittable. Ther e 
is one quic k wa y fo r tellin g certai n link s apart : jus t coun t th e numbe r o f 
components in the link. If the numbers are different, th e two links have to 
be different . S o obviously , th e trefoi l knot , th e Whitehea d link , an d th e 
Borromean rings all have to be distinct links. 

If w e hav e tw o projection s o f links , eac h wit h th e sam e numbe r o f 
components, just as for knots, we would like to be able to tell if they repre-
sent the same link. In Figure 1.33 , we sho w th e two simples t link s of tw o 
components. We call th e firs t o f thes e th e unlin k (o r trivia l link ) o f tw o 
components an d th e second th e Hopf link . On e difference betwee n thes e 
two links i s that th e unlink i s splittable , since it s two component s ca n b e 
separated b y a  plane . Bu t i n th e Hop f link , th e tw o component s d o lin k 
each other once . We would lik e a method fo r measuring numerically ho w 
linked u p tw o components are . We will define what' s know n a s the link -
ing number. 

OO GO 
Figure 133 Th e unlink of two components and the Hopf link . 

Let M an d N  b e two component s i n a  link, and choos e an orientatio n 
on each of them. Then a t each crossing between th e two components , on e 
of the pictures in Figure 1.34 wil l hold. We count a  + 1 for each crossing of 
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the first type , and a  - 1 fo r eac h crossing of the second type . Sometimes i t 
is hard to determine from th e picture whether a  crossing is of the first typ e 
or the second type . Note that if a crossing is of the first type , then rotatin g 
the understran d clockwis e line s i t u p wit h th e overstran d s o tha t thei r 
arrows match . Similarly , i f a  crossing i s of th e secon d type , then rotatin g 
the understrand counterclockwis e lines the understrand u p with the over -
strand so that their arrows match . 

V v 
+1 - l 

Figure 134 Computin g linking number . 

Now, we wil l take th e sum o f th e + l s an d —I s over al l the crossing s 
between M and N  an d divid e this sum by 2. This will be the linking num -
ber. W e d o no t coun t th e crossing s betwee n a  componen t an d itself . Fo r 
the unlink , th e linking numbe r o f th e two component s i s 0. For th e Hop f 
link, the linking number wil l be 1 or —1 , depending on the orientations on 
the two components. The two components in the oriented link pictured i n 
Figure 1.3 5 hav e linkin g numbe r 2 . Notice tha t i f w e reverse th e orienta -
tion on one of the two components , but no t the other , the linking numbe r 
of these two component s i s multiplied b y - 1 . I f we just look a t the abso -
lute value of the linking number, however, it is independent o f the orienta-
tions on the two components . 

Figure 135 Linkin g number 2. 

Exercise 1.15  Comput e the linking number o f the link pictured i n Figure 
1.36. Now revers e the direction on one of the components an d recom -
pute it. 
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Figure 136 Comput e the linking number . 

Notice that we use a  particular projectio n o f the link in order t o com -
pute th e linking number . I n fact , w e ca n show tha t th e compute d linkin g 
number wil l always be the same, no matter what projection o f the link w e 
use to compute it . We show thi s by proving tha t the Reidemeister move s 
do not change the linking number . Since we can get from an y one projec -
tion of a  link to any othe r vi a a  sequence o f Reidemeister moves , none of 
which will change the linking number, it must be that two different projec -
tions of the same link yield the same linking number . 

Let's first loo k a t the effect o f the first Reidemeiste r mov e on the link -
ing number . I t ca n creat e o r eliminat e a  self-crossin g i n on e o f th e tw o 
components, bu t i t wil l no t affec t th e crossing s tha t involv e bot h o f th e 
components, s o i t leave s th e linkin g numbe r unchanged . Now , let' s se e 
what a  Type II Reidemeister mov e does . In Figure 1.3 7 w e have chose n a 
certain orientatio n o n th e strand s o f th e link . W e ar e assumin g tha t th e 
two strand s correspon d t o th e tw o differen t components , becaus e other -
wise the move has no effect o n linking number . One of the new crossing s 
contributes a  + 1 t o th e sum , an d th e othe r crossin g contribute s a  —1 , s o 
the net contribution to the linking number i s 0. Even if we change the ori -
entation o n one of the strands, we will stil l have one + 1 and on e — 1 con -
tribution, so Type II moves leave the linking number unchanged . 

p +1 1 
) O R P 

- 1 J 

Figure 1.37 Typ e II Reidemeister moves don't affect linkin g number . 

Finally, what abou t Typ e II I moves? Onc e orientation s ar e chose n fo r 
each o f th e thre e strand s an d +l s an d - I s ar e assigne d t o eac h o f th e 
crossings, i t i s clea r tha t slidin g th e stran d ove r i n th e Typ e II I mov e 
doesn't chang e th e numbe r o f + l s o r —Is , and s o the linkin g numbe r i s 
preserved (Figur e 1.38). 
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Figure 1.38 Typ e III Reidemeister moves don't affect linkin g number . 

We say tha t th e linkin g numbe r i s a n invarian t o f th e oriente d link , 
that is, once the orientations are chosen on the two components of the link, 
the linking number i s unchanged b y ambient isotopy . It remains invarian t 
when th e projectio n o f th e lin k i s altered. Thi s i s one o f man y invariant s 
we wil l loo k at . Anothe r invarian t o f link s tha t w e hav e alread y men -
tioned i s simply the number o f components in the link. It is unchanged b y 
ambient isotopies of the link. 

Exercise 1.16  Explai n wh y th e linkin g numbe r o f a  splittabl e two -
component lin k will always be 0, no matter wha t projectio n i s used t o 
compute it . 

We can use linking number t o distinguish links . Since we want t o dis-
tinguish links that d o no t alread y have orientations o n them , we wil l us e 
the absolute value of the linking number. Any two links with two compo -
nents tha t hav e distinc t absolut e value s o f thei r linkin g number s hav e t o 
be different links . For instance, the trivial link of two components has link-
ing numbe r 0 . But the absolut e valu e o f th e linkin g numbe r o f th e Hop f 
link is 1, so the Hopf lin k cannot be the trivial link. 

Exercise 1.17  Comput e the absolute values of the linking numbers o f th e 
two links shown in Figure 1.39 in order to show that they must be dis-
tinct links. 

© €? 
Figure 1.39 Comput e the linking numbers. 

So no w you'r e thinking , "Well , a t leas t w e ca n tel l al l link s apart. " 
Unfortunately, lif e an d link s aren' t tha t simple . Tr y computin g th e link -
ing numbe r fo r th e Whitehea d lin k i n Figur e 1.30 . I t ha s linkin g numbe r 
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0, jus t lik e th e trivia l lin k o f tw o components . S o w e can' t eve n sho w 
that th e Whitehea d lin k i s differen t fro m th e trivia l lin k o f tw o compo -
nents. W e need som e othe r way s t o distinguis h variou s knot s an d links . 
In th e nex t section , we wil l se e one suc h way . Bu t firs t let' s tak e anothe r 
look a t th e Borromea n ring s (Figur e 1.40) . Not e tha t i f w e remove d 
any on e o f th e thre e component s o f thi s link , th e remainin g tw o com -
ponents woul d becom e tw o trivia l unlinke d circles . Th e fac t tha t thes e 
three ring s ar e locke d togethe r relie s o n th e presenc e o f al l three compo -
nents. 

(g) % 
figure 1.40  Two  pictures of the Borromean rings. 

A link is called Brunnian i f the link itself i s nontrivial, but the remova l 
of an y on e o f th e component s leave s us wit h a  set o f trivia l unlinke d cir -
cles. These link s ar e name d afte r Herman n Brunn , wh o dre w picture s o f 
such links back in 1892. 

Exercise 1.18*  Find a Brunnian link of four components . 

Exercise 1.19*  Find Brunnian links with arbitrarily many components . 

Exercise 1.20  Mak e up you r ow n conjectur e abou t Brunnia n links . Then 
see if you can prove it. (For example, can there be a Brunnian link such 
that each component i s a round fla t circle? What about ellipses? Think 
up your own. ) 

1.5 Tricolorabilit y 

We have talke d a  lot abou t tellin g knot s an d link s apart , bu t actuall y w e 
have no t ye t show n th e mos t basi c fac t o f kno t theory . W e hav e not  yet 
proved that there is any other  knot besides  the  unknot. Fo r al l we kno w righ t 
now, every projectio n o f a  kno t i n th e tabl e a t th e en d o f th e boo k coul d 
simply be a messy projection of the unknot. Maybe every one of those pro-
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jections can be turned int o the projection o f the unknot throug h a  series of 
Reidemeister moves . The point is that of course they can't be, but we need 
some wa y t o sho w this . So we wil l prov e tha t ther e i s at  least  one othe r 
knot besides the unknot. We will prove tha t the trefoi l kno t i s not equiva -
lent to the unknot. In order to do that, we need to introduce the idea of tri-
colorability. 

We will say tha t a  strand in a projection o f a  link i s a piece of the lin k 
that goe s fro m on e undercrossin g t o anothe r wit h onl y overcrossing s i n 
between. W e will sa y tha t a  projection o f a  kno t o r lin k i s tricolorable i f 
each o f th e strands i n th e projection ca n be colored on e of thre e differen t 
colors, so that a t each crossing , either thre e different color s come togethe r 
or al l th e sam e colo r come s together . I n orde r tha t a  projectio n b e tricol -
orable, we furthe r requir e tha t a t leas t tw o o f th e color s ar e used . Figur e 
1.41 show s tha t thes e tw o projection s o f th e trefoi l kno t ar e tricolorabl e 
(using white, gray, and black as the colors). 

Figure 1.41 Th e trefoil is tricolorable. 

In th e firs t tricoloration , thre e differen t color s com e togethe r a t eac h 
crossing, whereas i n th e secon d tricoloration , som e o f th e crossing s hav e 
only one colo r occurring . Bu t none o f th e crossing s i n eithe r pictur e hav e 
exactly two colors occurring, so these are valid tricolorations . 

Exercise 1.21  Determin e whic h o f th e projection s o f th e thre e six-cross -
ing knots 6y 62 , and 63 in Figure 1.42 are tricolorable. 

6t 6 2 6 3 

Figure 1A2 Projection s of 6y 62 , and 63. 
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Exercise 1.22  Sho w that the projection o f the knot 7 4 in Figure 1.43 is tri-
colorable. 

Figure 1 .43 Sho w that this knot projection is tricolorable. 

For ou r purposes , th e mos t importan t fac t i s tha t i f a  projectio n o f a 
knot i s tricolorable, then th e Reidemeiste r move s wil l preserve th e tricol -
orability. I f w e d o a  Typ e I  mov e an d introduc e a  crossing , w e ca n jus t 
leave al l th e strand s involve d th e sam e color , an d th e ne w crossin g wil l 
satisfy th e requirement s fo r tricolorability . Similarly , removing a  crossin g 
by a  Type I move preserves tricolorability . I f we d o a  Type II move t o in -
troduce two new crossings , and th e two original strands are different col -
ors, we can just change the color o f the new stran d t o the third colo r an d 
the resulting knot projection i s tricolorable. If the two original strands ar e 
the same color, we can leave the new strand and th e new crossings al l that 
same color. 

Figure 1.44 Typ e I moves preserve tricolorability . 

Similarly, using a  Type II move to reduce the numbe r o f crossing s b y 
two wil l als o preserve tricolorability . Eithe r al l of th e strand s tha t appea r 
in th e diagra m fo r th e Reidemeiste r mov e ar e th e sam e color , i n whic h 
case we can color the strands tha t resul t from th e Reidemeister mov e tha t 
same color, or three distinct colors come together a t each of the two cross-
ings, i n whic h cas e w e ca n colo r th e tw o resultin g strand s a s i n Figur e 
1.45b. Note tha t i n both thes e cases , since the origina l projection wa s col -
ored wit h a t leas t tw o distinc t colors , the resulting projectio n wil l also be 
colored with at least two colors. 



Introduction 2 5 

a b 

Figure 1.45 Typ e II moves preserve tricolorability . 

Exercise 1.23  Sho w that the Type III Reidemeister move preserves tricol-
orability. (There are several cases to check.) 

Therefore, sinc e Reidemeiste r move s leav e tricolorabilit y unaffected , 
whether o r not a  projection i s tricolorable depends onl y on the knot give n 
by th e projection . Either  every projection of  a knot is  tricolorable or no projec-
tion of that knot is  tricolorable.  Fo r instance , ever y projectio n o f th e trefoi l 
knot i s tricolorable . Sinc e th e usua l projectio n o f th e unkno t i s no t tri -
colorable (w e certainl y can' t us e a t leas t tw o color s o n i t sinc e i t doesn' t 
have distinc t strands) , it must be the case that the trefoil kno t and th e un -
knot are distinct. 

We hav e jus t show n ther e i s a t leas t on e othe r kno t beside s th e 
unknot. I n fact , an y kno t tha t i s tricolorabl e mus t b e distinc t fro m th e 
unknot. 

Exercise 1.24  Determin e whic h o f th e seven-crossin g knot s i n th e tabl e 
at the end of the book are tricolorable. 

Exercise 1.25  Sho w tha t the composition o f any kno t with a  tricolorabl e 
knot yields a new tricolorable knot . 

Exercise 1.26  Fin d a n infinit e se t of tricolorable knot s tha t ar e not obvi -
ously composite . (I f a  knot ha s a  crossing in the tricoloration tha t ha s 
only one color , you ca n replace the crossing wit h a  more complicate d 
tangle. You needn't prove that the knots that you describe are actuall y 
different knots. ) 

Thus, many knot s ca n be shown t o be nontrivia l usin g tricolorability . 
We can, in fact , conclud e tha t an y tricolorabl e kno t mus t be distinc t fro m 
any knot that is not tricolorable. 

Exercise 1.27  Giv e an argumen t tha t show s tha t th e figure-eight kno t i s 
not tricolorable . Conclud e tha t th e figure-eigh t kno t an d th e trefoi l 
knot are distinct knots. 
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Unfortunately, eve n i f w e ca n sho w tha t th e figure-eigh t kno t i s no t 
the same as the trefoil knot , tricolorability cannot be used to show that the 
figure-eight kno t is nontrivial. 

Exercise 1.28*  (a ) Label the strands o f the figure-eight kno t with a  selec-
tion of integers from th e set 0,1,2,3, and 4, using at least two differen t 
integers, s o tha t the y satisf y x  + y — 2z = 0 (mo d 5 ) a t eac h crossing , 
where z labels the overstrand. (Tha t is to say, the remainder i s 0 when 
x + y — 2z is divided by 5.) Then show that such a labeling system on a 
knot projection i s preserved under Reidemeiste r moves (Typ e III is the 
tricky one) . Conclude tha t the figure-eight kno t i s not the trivial knot . 
(An argument is needed, even for this last step.) 

(b) Reinterpre t tricoloratio n i n term s o f a  numerica l schem e lik e 
the one we just applied to the figure-eight knot . 

By Exercise 1.25, we know that the composition of the trefoil knot with 
any othe r kno t i s tricolorable . Thi s proves tha t th e unkno t canno t b e th e 
composition of the trefoil knot with any other knot . 

o©^Unsolved Question 

Is ther e a  way t o generaliz e tricolorabilit y i n orde r t o sho w tha t th e 
unknot is not a composition of any two nontrivial knots? Although w e 
will see a  proof o f thi s fact later , the goa l o f thi s unsolved questio n i s 
to find a  simpler proof. 

Tricolorability fo r links of two components i s slightly differen t (Figur e 
1.46). Notice tha t th e trivia l link o f tw o component s is  tricolorable. Thi s i s 
the reverse of what happened fo r tricolorability for knots . Now, if we have 
a lin k o f tw o component s tha t i s not  tricolorable, we kno w i t can' t be th e 
unlink. 

Figure 1.46 Tw o projections o f the trivia l lin k o f tw o components . 

Exercise 1.29  Prov e tha t th e Whitehead lin k i n Figure 1.3 0 i s not tricol -
orable and therefore i s not the trivial link of two components. Remem-
ber, linking number wasn't enough to show this before. 
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Exercise 1.30  Determin e whic h o f th e link s o f si x o r fewe r crossing s i n 
Table 1.1 at the end of the book are and are not tricolorable. 

Exercise 1.31  Sho w that the link in Figure 1.47 is tricolorable. 

Figure 1.47 Thi s link is tricolorable. 

1. Q  Knot s and Sticks 
Suppose we were given a bunch of straight sticks and we were told to glue 
them together end to end in order to make a nontrivial knot. The sticks can 
be any length tha t we wan t (Figur e 1.48) . How man y stick s wil l i t take t o 
make a nontrivial knot? Try playing with some sticks to see what happens . 
Certainly, thre e stick s aren' t enough , a s the y woul d jus t for m a  triangl e 
that lies in a plane. If we looked down at the plane, we would see a projec-
tion of the knot with no crossings. So it would have to be the unknot. 

Figure 1.48 A  kno t made out of sticks. 

How abou t fou r sticks ? I f we view th e four stick s from an y direction , 
we wil l see a projection o f the corresponding knot . I f two of the sticks ar e 
attached t o eac h othe r a t thei r ends , the y canno t cros s eac h othe r i n th e 
projection (sinc e two straigh t line s ca n cros s a t mos t once , in thi s cas e a t 
the poin t wher e the y ar e attache d t o on e another) . S o i n th e projection , 
each stick can only cross the one stick that i s not attache d t o either on e of 
its ends . Therefore , ther e ca n be a t mos t tw o crossing s i n th e projection . 
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But th e onl y kno t wit h a  projection o f tw o o r fewe r crossing s i s th e un -
knot. (See Exercise 1.2. ) 

So four sticks aren't enough to make a nontrivial knot. How about fiv e 
sticks? Let's view the knot so that we are looking straight down one of the 
sticks. In the projection o f the knot that we see, we will only be able to see 
four o f the sticks, since the fifth stick is vertical. For the same reason as in 
the previous paragraph , th e four stick s tha t we se e can have a t mos t tw o 
crossings, and so the knot must be the unknot . 

Exercise 1.32  Prov e that, in fact, a  knot with four stick s in the projectio n 
can have at most one crossing. 

Therefore, i t mus t tak e a t leas t si x sticks t o make a  knot . I n fact , i t i s 
possible t o mak e a  trefoi l kno t wit h si x sticks , a s show n i n Figur e 1.49 . 
Although the picture looks believable, how do we know tha t we could re-
ally make a trefoil knot in space out of straight sticks like this? How do we 
know tha t the sticks needn't be bent o r warped t o fit together i n this way, 
and that they only look straight when we see them from thi s view? We are 
only looking at a projection of the sticks in this picture. 

hL \  H 

Figure 1.49 A  trefoi l knot from six sticks. 

One solution i s to actually build th e knot with rea l sticks . But we ca n 
convince ourselve s tha t thi s constructio n work s withou t goin g t o tha t 
much trouble. Let the vertices labeled P lie in the xy plane. The vertices la-
beled L  li e low , underneat h th e plane . Th e vertice s labele d H  lie  high , 
above th e plane . The n it' s clea r tha t suc h a  kno t coul d actuall y b e con -
structed from sticks . 

If we wan t a  hands-on demonstratio n tha t fiv e stick s won't suffic e t o 
make a  knot , w e ca n tr y i t wit h fiv e "sticks " tha t w e wer e bor n with . 
Namely, thin k o f th e firs t stic k a s being you r lef t forearm , followe d b y a 
stick formed fro m you r lef t uppe r arm , followed b y a  stick that goes fro m 
your lef t shoulde r t o your right shoulder, followed b y a stick formed fro m 
your righ t uppe r arm , followe d b y a  stic k forme d fro m you r righ t lowe r 
arm. That's a  total of five sticks that ar e attached en d to end (Figur e 1.50). 
If you can tangle up your arms and then clasp your hands together so that 
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the loo p forme d fro m thes e fiv e stick s i s knotted , yo u wil l hav e a  kno t 
made from fiv e sticks . Don't hurt yourself, we have already demonstrate d 
that you can't succeed . 

Figure 1.50 Makin g knots from your arms ? 

But supposedly, six sticks are enough to make a knot. 

Exercise 1,33  Tak e a straight stick (say a yardstick o r fireplace poker ) a s 
your sixt h stick and demonstrat e wit h your arm s and thi s stick that a 
knot can be made out of six sticks. 

What happen s i f w e tr y t o mak e knot s usin g tw o peopl e holdin g 
hands and their "ten sticks"? What knots can we make? 

Exercise 1,34  Ho w man y stick s woul d i t tak e t o mak e a  figure-eigh t 
knot? 

Exercise 1,35*  Sho w that the only nontrivial knot you can make with six 
sticks is the trefoil knot . 

Exercise 1,36  Sho w tha t yo u ca n mak e th e kno t 5 i (se e the tabl e a t th e 
back o f th e book) o r th e Whitehea d lin k usin g onl y 8  sticks (us e P' s 
L's, and H's to demonstrate that your constructions work). 

Define th e stic k numbe r s(K)  o f a  kno t K  t o b e th e leas t numbe r o f 
straight sticks necessary to make K. 

Exercise L37  Sho w that if/ an d K  are knots, s(J#K) < s(J)  + s(K) - 1. 

c©(Unsolved Question 

Can th e inequalit y i n Exercise 1.3 7 be improve d t o replace th e - 1 b y 
- 2 o r -3 ? Amazingly , if / an d K  are trefoil knot s (an d hence each ha s 
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stick numbe r 6) , then s(J#K)  = 8, showing tha t i n thi s ver y specifi c exam -
ple, we have s(J#K) < s(J) + s(K) ~ 4. 

In 1997 , thre e student s an d I  prove d th e surprisin g fac t tha t i f on e 
takes the composition of n trefoil knots , the stick number i s exactly 2n + 4 . 
So each new trefoi l onl y requires two more sticks . (Adams et al, 1997). In-
dependently, a  Korea n mathematicia n name d Gy o Tae k Ji n prove d th e 
same fac t i n a  pape r tha t appeare d adjacen t t o our s i n th e sam e journal . 
(Jin, 1997). 

Exercise 1.38*  Let c(K) be the least number o f crossings in any projectio n 
of a knot K. Prove that if K is a nontrivial knot, then 

5 + f(25 + 8(c(K)-2)]<s(K) 
2 

(Hint: Look straight down one edge and then count crossings to obtain 
a bound on c(K) in terms of s(K). Then invert the inequality. ) 

In fact, we also have an upper bound o n the stick number o f a knot i n 
terms o f th e minimu m crossin g numbe r c(K)  of th e knot . I n a  paper tha t 
appeared i n 1991 , Seiya Negami , a  professor a t Yokoham a Nationa l Uni -
versity i n Japan, showe d s(K)  <2 c(K).  The proof i s elementary; however , 
it depends on some results from grap h theory, so we will not discuss it. 

t^QJnsolved Questions 

1. B y Exercise 1.37 and the preceding paragraph, we know tha t 

5 +7(25 + 8{c{K) - 2) ) <  s(K) <-2c(K) 
2 

Either sho w thes e ar e th e bes t bound s w e ca n obtai n (b y findin g 
examples o f knot s o f an y crossin g numbe r tha t hav e s(K ) = 5 + 
V(25 + 8(c(K) - 2 ) | / 2 an d othe r examples tha t have s(K)  = 2c(K), or im -
prove thes e bounds o n s(K)  to narrow dow n th e possibilitie s fo r s(K) 
still further . 

2. Doe s s(K) change i f we insis t that th e sticks that we make the kno t 
out o f mus t al l be the sam e length? (I t does not chang e i n the case of 
the trefoi l knot . But i t seems unlikely tha t the same would be true fo r 
all knots.) 

In Chapter 7 , when w e tal k abou t application s o f kno t theor y t o syn -
thetic chemistry, we will see why one might care about how many sticks it 
takes to make a knot. 



Tabulating Knots 

2.1 Histor y of Knot Tabulation 

Knot theor y bega n i n earnes t aroun d th e en d o f th e nineteent h centur y 
Previously, severa l mathematician s ha d dabble d wit h knots , includin g 
Carl Friedric h Gaus s (1777-1855) , on e o f th e greates t o f al l mathemati -
cians. But it was Lord Kelvin' s theory that atoms were knotted vortice s i n 
the ether that sparked serious interest in determining the possible knots. 

The first work on tabulating knot projections was done in the 1880s by 
the Reverend Thomas P. Kirkman. These early explorations in knot theor y 
suffered fro m Kirkman's opaque writing style. To quote: 

By a knot of n crossings, I understand a reticulation of any number of 
meshes of two or more edges, whose summits, all  tessaraces, are each a 
single crossing, as when you cross your forefingers straight or slightly 
curved, so as not to link them, and such meshes that every thread is ei-
ther seen, when the projection of  the knot with its  n crossings  and no 
more is drawn in double lines, or conceived by the reader of its course, 

£J 
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when drawn  in  single  line,  to pass  alternately under and over  the 
threads to which it comes at successive crossings. 

In spite of Kirkman's obfuscation, hi s ideas were applied by a Scottish 
physicist name d Pete r Guthri e Tai t i n orde r t o lis t al l o f th e alternatin g 
knots up t o 1 0 crossings. This was the firs t successfu l tabulatio n o f knots . 

A professor a t the University o f Nebraska name d C . N. Little was th e 
first t o attac k th e proble m o f enumeratin g th e nonalternatin g knots . I n 
1899, afte r si x year s o f work , h e publishe d a  tabl e o f 4 3 nonalternatin g 
knots o f 1 0 crossings. His tabl e was believed t o be correc t fo r 7 5 years. I t 
wasn't unti l 197 4 that i t wa s discovere d tha t tw o o f th e knot s i n Little' s 
table were in fact the same knot and that there were only 42 distinct nonal -
ternating knots of 10 crossings. The duplication wa s discovered by a part -
time mathematician an d Ne w Yor k lawyer name d Kennet h A  Perko. The 
two projections tha t actuall y correspon d t o the sam e kno t ar e now calle d 
the Perko pair (Figure 2.1). 

Figure 2.2 Th e Perko pair. 

Exercise 2. 1 Sho w that the Perko pair are the same knot. 

Little wen t o n t o publis h a  censu s o f 11-crossin g alternatin g knots , 
eventually discovered t o contain eleven omissions and on e duplication. I n 
1917, Mar y G . Hasema n liste d al l amphicheira l knot s (remember , tha t 
means knot s tha t are equivalent t o their mirro r images ) o f 1 2 crossings i n 
her doctoral thesis. 

During thi s early period i n the tabulation o f knots, there were few at -
tempts t o rigorously prov e tha t th e knots claime d t o be distinc t i n th e ta -
bles were actually distinct. In fact, it wasn't until 1927 that two mathemati -
cians named Alexande r an d Brigg s provided th e firs t proo f tha t the knot s 
of up to nine crossings in the tables were actually distinct, with only a fe w 
pairs of knots that they couldn't dea l with. Their methods utilized the first 
polynomial applied t o knots, now known a s the Alexander polynomial . I t 
remained the only polynomial for knots until 1984. 

Kurt Reidemeiste r finishe d of f th e rigorou s classificatio n o f knot s u p 
to nine crossing s i n 1932 . There ensue d a  long perio d o f inactivit y i n th e 
tabulation of knots. 
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In 1969, an Englishman named John H. Conway invented a  new nota -
tion fo r knot s an d use d i t t o determin e al l o f th e prim e knot s o f 1 1 o r 
fewer crossing s an d al l o f th e prim e nonsplittabl e link s o f 1 0 o r fewe r 
crossings. His tabulation was al l done by hand, without th e aid o f a  com-
puter. Conwa y ha d firs t becom e intereste d i n knot s while i n high schoo l 
and formulate d man y o f hi s idea s then . Bu t because o f hi s wide-rangin g 
mathematical interests , i t wasn' t unti l man y year s late r tha t h e applie d 
these earlier ideas to the classification o f knots. 

In 1978 , Alain Caudro n o f th e Universit y o f Pari s produce d th e firs t 
correct lis t o f al l prime knot s through 1 1 crossings, repairing a  few error s 
in Conway's table. In the meantime, a Canadian named Hugh Dowker in -
vented a  ne w notatio n fo r knot s tha t wa s loosel y base d o n Tait' s idea s 
from th e previous century. An algorithm for generating knots that utilize d 
this notation was implemented o n the computer by an Englishman name d 
Morwen Thistlethwaite . Thi s compute r progra m resulte d i n a  table o f al l 
prime knot s throug h 1 2 crossings i n 1981 , and a  tabl e o f al l prime knot s 
through 1 3 crossings i n 1982 . No on e worke d o n extendin g th e lis t unti l 
ten year s late r whe n Ji m Hoste bega n wor k wit h a  grou p o f hig h schoo l 
students wh o ha d acces s to a  supercomputer . A t th e sam e time , Morwe n 
Thistlethwaite began again to work on tabulation, extending the tables u p 
to fifteen crossings . To tackle the 16-crossing knots, two groups worked in -
dependently. Host e recruite d Jef f Weeks , a n exper t i n hyperboli c knot s 
(see Section 5.3) while Thistlethwaite worked alone . Using differen t meth -
ods, the tw o team s cam e u p wit h th e sam e number o f 16-crossin g knots . 
The pape r the y co-authore d ha s th e wonderfu l title , "Th e Firs t 1,701,93 6 
Knots" (Hoste et al, 1998). 

Here is a list of the numbers of knots that have been determined so far : 

Number of crossings 3  4  5 6  7 8  9  1 0 1 1 1 2 1 3 1 4 1 5 1 6 
Number of prime knots 1  1  2  3  7  2 1 49 16 5 55 2 217 6 998 8 46,97 2 253,29 3 1,388,70! 

In this list of numbers, we do not coun t both a  knot and it s mirror image . 
In the case that a knot is equivalent to its mirror image, (that is, the knot is 
amphicheiral), no information i s lost. In the case that the knot is not equiv-
alent t o it s mirro r image , however , a  singl e kno t i n thi s lis t actuall y re -
presents tw o distinc t knots . Hoste , Thistlethwait e an d Week s deter -
mine exactly which knots are amphicheiral, giving an answer to this ques-
tion a s well . W e wil l tal k mor e abou t determinin g amphicheiralit y i n 
Chapter 6. 

What does a  14-crossing knot look like? Let's draw one . Start drawin g 
a curve on a  piece of paper, allowing i t to cross itself, but keeping track of 
how many times it does so as you go along. When you get near to 14 cross-
ings, start heading for the point you started at . Try to close up the curve af -
ter exactly 14 crossings (Figure 2.2). You won't always be able to close it up 
after exactl y 1 4 crossings, but afte r a  few practic e runs , you'll ge t better a t 
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it. Now, let' s mak e th e projectio n alternating . T o do this , choose you r fa -
vorite crossin g an d decid e whic h strin g a t th e crossin g goe s unde r an d 
which goe s over . Then, follow on e o f th e strings fro m tha t crossin g to th e 
next crossing, where you make the string do the opposite from wha t i t di d 
at th e las t crossing . Continue i n thi s manner unti l yo u have a  14-crossin g 
alternating knot . Thi s give s yo u som e feelin g fo r ho w man y 14-crossin g 
knots there might be. Any 14-crossing scribbled curve corresponds to a 14-
crossing alternatin g knot . Notice , tha t i f th e kno t needn' t b e alternating , 
you hav e 2 14 choices o f ho w t o pu t i n th e crossing s o n an y on e scribble , 
since at every one of the 14 crossings, there are two possibilities. 

Figure 2.2 Scribblin g to make a 14-crossing projection . 

There ar e als o million s o f differen t scribble d curve s tha t w e coul d 
draw. I t seems like there ar e many mor e 14-crossin g knots tha n w e coul d 
ever catalog . Bu t many o f th e scribble s an d choice s o f crossing s actuall y 
correspond to the same knots. 

o^(Unsolved Questions 
i . Fin d al l o f th e 17-crossin g prime knots . This i s probably har d an d 
requires som e ne w ideas . Se e th e nex t sectio n fo r wh y thi s coul d b e 
difficult. 

2. Classif y th e alternatin g knot s o f 1 7 crossings . Whe n yo u restric t 
yourself t o alternating knots , the number o f cases you have to look a t 
is reduced by a factor o f 217. 

3. Determin e th e sequenc e o f integer s tha t begins 1 , 1, 2, 3, 7, 21, 49, 
165, 552, 2176, 9988, 46,972, 253,293, 1,388,705, . . . . Perhap s thi s se -
quence o f number s givin g th e numbe r o f prim e knot s wit h a  give n 
crossing number i s in fact a  reasonable function , like/(n ) = greatest in -
teger les s than en~^. This is a hard ope n question . Perhaps no elemen -
tary function give s this sequence. 

4. Sho w tha t th e numbe r o f distinc t prim e (n  + l)-crossing knot s i s 
greater tha n th e numbe r o f distinc t prim e n-crossin g knots , fo r eac h 
positive integer n. It is remarkable that we cannot yet show this. 

We do kno w tha t th e number o f prim e knot s o f n  crossings grow s a t 
an exponential rate. In 1987, Claus Ernst and Dewit t Sumners, then both a t 
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Florida Stat e University , use d recen t result s o n alternatin g knot s du e t o 
Kauffman, Murasugi , an d Thistlethwait e i n orde r t o prove tha t th e num -
ber o f distinc t prime knot s o f n  crossings i s at leas t (2"~ 2- l ) /3 fo r n>^. 
(See Erns t an d Stunners , 1987. ) Not e tha t i n thi s lowe r bound , bot h a 
given kno t an d it s mirro r imag e ar e counte d i f the y ar e no t equivalent . 
Hence, this number ca n exceed th e number o f prime knot s o f n  crossing s 
given in the list of numbers of knots for n  ^ 16 . We talk more about this re-
sult in Section 3.2. 

Dominic Wels h o f Oxfor d Universit y ha s prove d tha t th e numbe r o f 
distinct prime n-crossin g knot s i s bounded abov e by a n exponentia l i n n. 

2.2 Th e Dowker Notation for Knots 

The Dowker notatio n i s an extremely simple way t o describe a  projectio n 
of a knot. First, let's start with an alternating knot. Suppose we have a pro-
jection of an alternating knot that we want to describe, like the one in Fig-
ure 2.3 . Choose a n orientatio n o n th e knot , give n b y placin g coherentl y 
directed arrow s alon g th e knot . Pic k any crossin g an d labe l i t 1 . Leaving 
that crossin g along the understand i n the direction o f the orientation , la -
bel th e nex t crossin g tha t yo u com e t o wit h a  2 . Continue throug h tha t 
crossing on the same strand o f the knot, and label the next crossing with a 
3. Continue t o label the crossing s with th e integer s i n sequenc e unti l yo u 
have gon e al l th e wa y aroun d th e kno t once . Whe n yo u ar e done , eac h 
crossing will have two labels on it, as the knot passes through eac h cross-
ing twic e (Figur e 2.4) . Notic e that , i n fact , eac h crossin g ha s on e eve n 
number and one odd number labeling it. 

/ ^ 

Figure 2.3 A n alternating knot . 

Figure 2.4 Labe l each crossing of the knot with two numbers. 
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Exercise 2.2  Wh y does every crossin g ge t one even numbered labe l an d 
one odd numbered label ? 

Thus, we can think of this labeling as giving us a  pairing between th e 
odd numbers from 1  to 18 and the even numbers from 1  to 18. In this case, 
we get 

1 3  5  7  9  1 1 1 3 1 5 1 7 
14 1 2 1 0 2  1 8 1 6 8  6  4 

As a  shorthand , w e coul d jus t writ e 1 4 1 2 1 0 2 1 8 1 6 8 6 4 , and kee p i n 
mind tha t this means 1 is paired with 14, 3 with 12,5 with 10, and so forth . 
Thus, from a  projection o f a  knot, we obtai n a  sequence o f eve n integers , 
where th e numbe r o f eve n integer s i s exactl y th e numbe r o f crossing s i n 
the knot. 

Exercise 2.3  Fin d a  sequence o f even integer s tha t represent s th e projec -
tion of the knots 62 and 6 3 (Figure 2.5). How abou t a  second sequenc e 
of even integers that also represents the same projection o f 63? 

62 6 3 

Figure 2.5 Th e knots 62 and 63. 

Now, suppose we want t o go the other way. Given a sequence of eve n 
integers tha t represent s a  projectio n o f a n alternatin g knot , ho w d o w e 
draw the projection? Say the sequence is 8 10 12 2 14 6 4. This is shorthand 
for 

1 3  5  7  9  1 1 1 3 
8 1 0 1 2 2  1 4 6  4 

So let's begin drawin g th e knot . Star t b y drawin g jus t th e firs t cross -
ing, labeling i t with a  1  and a n 8 . We extend th e understrand o f th e kno t 
and the n dra w i n th e nex t crossing , whic h correspond s t o 2 . Sinc e 2  i s 
paired wit h 7 , we label this crossing with a  2 and a  7. Because the knot i s 



Tabulating Knots 3 7 

alternating, we kno w tha t th e stran d tha t w e ar e on goe s ove r thi s cross -
ing. We continue the overstrand throug h this crossing to the next crossin g 
where it becomes the understrand, labeling the new crossing with a  3 and 
the integer tha t i s paired wit h 3 , namely 1 0 (Figure 2.6) . We continue thi s 
process unti l the next intege r tha t shoul d b e placed o n a  crossing alread y 
labels a n existin g crossing . We then kno w tha t th e kno t mus t no w circl e 
around t o pass through that crossing. Note that we have two choices as to 
how t o circl e around : eithe r circlin g to the righ t o r t o th e lef t i n orde r t o 
pass back through the previously drawn crossing . For the time being, let's 
ignore this ambiguity an d jus t choose either directio n fo r circlin g around . 

1 
,8 ^ 

2 

\ 

h 
3 

f 

10 |  13 

4 | 5 

12 | l l 

« l 

Figure 2.6 Constructin g a knot projection from the Dowker notation . 

We continue i n this manner . I f neithe r o f th e label s on the nex t cross -
ing has occurred before, then we make a new crossing. But if one of the la-
bels has occurred before , we circl e the knot through tha t crossing . All the 
way along , w e wil l b e sur e tha t th e crossing s alternat e a s w e progres s 
along the knot . Finally , we end u p with a  picture of our kno t (Figur e 2.7). 

Figure 2.7 Th e knot that comes from 8  10 12 2 14 6 4. 

Exercise 2.4  Whic h seven-crossin g kno t fro m th e tabl e a t th e en d o f th e 
book is this knot? 

Exercise 2.5  Dra w a picture of the projection o f an alternating knot corre-
sponding to the sequence 10 12 8 14 16 4 2 6. 
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Now what abou t tha t ambiguit y i n our choic e of how the knot circle s 
around? Ou r choic e can  change th e resultin g knot . Fo r instance , th e se -
quence 4 6 2 10 12 8 represents tw o distinc t knots , as shown i n Figure 2.8. 
Note tha t th e two knot s ar e composit e knots , and tha t thi s i s reflected i n 
the fac t tha t th e sequenc e 4  6 2 10 12 8 is actually a  shuffling o f th e thre e 
numbers 2 , 4, 6 and the n a  shufflin g o f th e thre e number s 8 , 10 , and 12 . 
When the permutation o f the even numbers can be broken into two sepa -
rate subpermutations, the resulting knots are composite (assuming each of 
the facto r knot s i s nontrivial) an d th e kno t i s not completel y determine d 
by the Dowker notation . However, i f we restrict ourselves to sequences of 
even numbers tha t canno t be spli t into subpermutations , eithe r a  particu -
lar kno t o r it s mirro r imag e result s (Figur e 2.9) . Whe n th e kno t i s am -
phicheiral, only one knot can be the result . 

Figure 2.8 Tw o knots with the same Dowker notation . 

Figure 2.9 A  kno t and its mirror image are both given by 8 6 10 2 4. 

Although th e possibl e projection s loo k different , the y wil l al l corre -
spond to the same pair of knots. The best way to see this is to think of pro-
jecting th e knot onto a sphere (Figure 2.10) rather than onto a plane. (Jus t 
as th e eart h look s plana r unti l yo u ge t fa r enoug h awa y fro m it , so doe s 
any sphere. ) Th e advantage t o projecting ont o a  sphere i s that ther e i s n o 
special oute r regio n wit h infinit e are a a s there i s in a  projection ont o th e 
plane. Figure 2.11 contains two projections describe d by 8 6 10 2 4 that ar e 
distinct a s projections o n th e plan e bu t tha t ar e equivalent projection s o n 
the sphere. 
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Figure 2.10 Projectin g a knot onto a sphere. 

Figure 2.11 Tw o projections of 8 6 10 2 4. 

Exercise 2.6  Dra w tw o projection s give n by 1 0 12 2 14 6 4 8, which ar e 
inequivalent a s projection s i n th e plan e bu t whic h ar e equivalen t a s 
projections on the sphere. 

Exercise 2.7  Ho w man y differen t sequence s o f the integers 2 4 6 8 1 0 1 2 
14 are there? (This exercise gives us an upper bound o n the number of 
possible alternatin g kno t projection s wit h seve n crossings ; however , 
it's far from accurate. ) 

The system that we have explained works very well for describing th e 
projection o f a n alternatin g knot , but ho w ca n w e exten d i t t o knots tha t 
aren't alternating ? We add i n + and — signs to our sequenc e o f even num -
bers. Our rul e i s as follows: Whe n traversin g th e knot usin g th e labelin g 
system tha t we have described , we assign an eve n intege r an d a n odd in -
teger to each crossing. If the even integer i s assigned t o the crossing whil e 
we are on the overstrand a t that crossing , we leave the even intege r posi -
tive. But if the even integer is assigned t o the crossing while we are on the 
understrand o f tha t crossing , w e mak e th e correspondin g eve n numbe r 
negative. So, for example , in the knot in Figure 2.12, the numbers 14,12 , 4, 
and 8 become negative. 
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Figure 2.12 A  nonalternatin g kno t wit h sequenc e 6  -1 4 1 6 -1 2 2  - 4 
-810 . 

Exercise 2.8  Dra w a  projectio n o f th e kno t correspondin g t o th e se -
quence 14 12 -16 2  18 6 8 10 - 4. 

Exercise 2.9  Ho w do you recognize from th e sequence of numbers that a 
projection ha s a  trivial crossing in it like this? How abou t recognizin g 
a Type II Reidemeister mov e that wil l reduce the number o f crossing s 
by two? (See Figure 2.13.) 

d> Q ) 
a b 

Figure 2.13 (a ) Trivial crossing, (b) Type II Reidemeister move . 

Dowker's notation allows us to feed projection s o f knots into the com-
puter simply a s a sequence o f numbers. In particular, suppose we wante d 
to attempt a  classification o f 14-crossin g knots . The number o f sequence s 
of the 14 numbers 2,4, 6, 8,10,12,14,16,18,20, 22 , 24, 26, 28 is 14!, which 
is about 87 billion. Then we can put a +1 or - 1 i n front o f each of the even 
numbers, giving us another facto r o f 214. Of course, there aren't thi s man y 
different knot s with 14 crossings. Lots of the sequences represent the same 
knot. I n fact , lot s o f th e sequence s represen t th e sam e projectio n o f th e 
same knot. 

Morwen Thistlethwait e use d th e Dowke r notatio n t o lis t al l o f th e 
prime knots of 13 or fewer crossings . Perhaps it will turn out to be the best 
way to list knots of 14 or fewer crossings . 



Tabulating Knots 4 1 

2.3 Conwa y s Notation 

In this section, we introduce a  notation fo r knot s du e to John H. Conway . 
This was the notation he used in order to tabulate the prime knots throug h 
11 crossings an d prim e link s throug h 1 0 crossings i n 1969 . (Although h e 
did not use a computer, he missed only four knots. ) The Conway notatio n 
has been utilized in order to prove numerous results and recently has been 
applied t o knotting in DNA (se e Section 7.2 and Sumners , 1992). It is par -
ticularly suited to calculations involving what are called tangles . 

A tangle in a knot or link projection i s a region in the projection plan e 
surrounded b y a  circle such that th e knot o r link crosses the circle exactly 
four time s (Figure 2.14). We will always think of the four point s where the 
knot o r link crosses the circle as occurring i n the four compas s direction s 
NW, NE, SW, and SE. 

- - - < 

Figure 2.14 Tangles . 

We can use tangles as the building blocks of knot and lin k projection s 
(Figure 2.15). Therefore, understanding tangle s will be very helpful i n un-
derstanding knots . We will sa y tw o tangle s ar e equivalen t i f w e ca n ge t 
from on e to the other by a sequence of Reidemeister move s while the fou r 
endpoints of the strings in the tangle remain fixed an d while the strings of 
the tangle never journe y outsid e th e circl e defining th e tangle . So, for in -
stance, th e tw o tangle s i n Figur e 2.16 a an d e  ar e equivalen t b y th e se -
quence of Reidemeister moves in Figure 2.16b, c and d, e. 

Figure 2.15 Kno t projections formed fro m tangles . 



42 Th e Knot Book 

Figure 2.16 Thes e tangles are equivalent . 

Notice tha t i f we for m a  knot fro m a  single tangle by gluin g togethe r 
the ends in pairs as we did in Figure 2.15a, then two such knots are equiv-
alent wheneve r th e correspondin g tangle s ar e equivalent . Let' s loo k a t 
some particula r tangle s tha t ar e easy to form. On e o f the simples t tangle s 
is two vertica l strings , as in Figur e 2.17a . W e denote thi s tangl e a s th e °° 
tangle. We denote th e tangle consistin g o f tw o horizonta l string s a s the 0 
tangle. W e coul d win d tw o horizonta l string s aroun d eac h othe r t o ge t 
Figure 2.17c . We denote thi s tangl e b y th e numbe r o f left-hande d twist s 
we pu t in . In this case , the number i s 3. If we ha d twiste d th e othe r wa y 
around, we would hav e denoted th e resulting tangle by —3 . Note tha t fo r 
a positive-intege r twist , the overstran d alway s has a  positive slope , if w e 
think of it as a small segment of a line. 

Figure 2.17 (a ) The oo tangle, (b) The 0 tangle, (c) The 3 tangle. 

We are goin g t o for m a  more complicate d tangle , starting fro m th e 3 
tangle. First , we reflec t th e tangl e throug h th e N W an d S E diagonal lin e 
in Figur e 2.18 a t o obtai n Figur e 2.18b . Thin k o f thi s reflectio n a s i f w e 
reflected i n a mirror that was perpendicular t o the projection plane and in-
tersected th e projectio n plan e alon g th e N W an d S E diagonal line . Not e 
that the two ends of the tangle along the diagonal are fixed whe n we per -
form the reflection, whil e the two ends of the tangle that are not on the di-
agonal ar e switched . I t i s sometime s difficul t t o picture wha t happen s t o 
the crossing s unde r th e reflection . Usually , w e ca n figure  ou t wha t hap -
pens to one crossing and then we can infer wha t must happen to the other 
crossings. Not e tha t fo r a  positive-intege r twist , i t i s stil l tru e tha t afte r 
reflection the overstrand has positive slope. 



Tabulating Knots 4 3 

Now w e win d th e tw o right-han d end s o f th e tangl e aroun d eac h 
other to get Figure 2.18c. We denote thi s tangle by 3 2, as the original tan -
gle had thre e twist s o f the horizonta l string s followe d b y a  reflection an d 
then two twists of the horizontal strings. 

Figure 2.18 Constructin g a tangle. 

Let's complicate this tangle still further. First , we take the tangle 3 2, as 
in Figur e 2.19b, and agai n reflec t abou t th e NW t o SE diagonal. Then w e 
add - 4 twist s t o th e right-han d strings , a s i n Figur e 2.19c . W e denot e 
this tangle 3 2 — 4. Figure 2.20 gives some additional examples. 

Figure 2.19 Constructin g the 3 2 -4 tangles . 

21-2 111 1 

a b 

Figure 2.20 Mor e tangles. 
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We call any tangl e tha t w e coul d construc t i n thi s manne r a  rationa l 
tangle. Notice that if the rational tangle is represented by an even numbe r 
of integers , w e ca n thin k o f constructin g i t b y simpl y startin g wit h tw o 
vertical string s (tha t is , the <* > tangle ) an d the n twistin g th e tw o botto m 
endpoints around each other some number of times, while holding the top 
two endpoint s fixed . The n w e coul d twis t th e tw o right-han d endpoint s 
around eac h other whil e keeping the left-hand endpoint s fixed . W e could 
then alternatel y twis t th e botto m tw o endpoint s an d th e righ t tw o end -
points t o create the tangle. A positive-integer twis t always gives the over -
strand a  positive slope, regardless of whether the twist is occurring in two 
vertical strands or two horizontal strands (Figure 2.21). 

Figure 2.21 Positiv e integer twists give the overstrand positive slope. 

Similarly, if the rational tangle is represented b y an odd numbe r o f in-
tegers, we ca n construc t i t by startin g wit h tw o horizonta l string s (th e 0 
tangle) an d alternatel y twistin g th e tw o right-han d endpoint s appropri -
ately, followed by twisting the two bottom endpoints appropriately . 

Exercise 2.10  Dra w the rational tangles correspondin g t o 2 - 3 4  5 and 3 
- 1 3 - 3 2 . 

Exercise 2.11  Sho w tha t th e tw o tangle s 2  11 an d - 1 - 2 2 ar e equiva -
lent. 

Amazingly enough , there is an extremely simple way to tell if two ra -
tional tangles are equivalent. Suppose the two tangles are given by the se-
quences o f integers — 2 3 2 and 3  — 2 3. We compute th e so-called contin -
ued fraction s correspondin g t o thes e integers . Th e continue d fractio n 
corresponding to -2 3  2 is 

3 +  (1 / -2 ) 
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We put the first — 2 in the denominator o f a fraction wit h numerator 1 . 
We add t o the -1 / 2 the next number 3 , and the n put th e result i n the de -
nominator o f a fraction wit h numerator 1 . We then added th e last numbe r 
to the result. Notice that we can clean up this fraction : 

Z +  3  + ( l / - 2) z + 5 / 2 z + 5 5 

The continued fraction correspondin g to 3 -2 3  is 

1 
3 + - 2 + (1/3 ) 

which als o equal s 12/5 . I t i s i n fac t th e cas e that , sinc e thei r continue d 
fractions ar e equal , these two rational tangles are equivalent (Figur e 2.22). 

^ 

-2 3 2 3- 2 3 

Figure 2.22 Tw o equivalent rational tangles. 

Exercise 2.12  Dra w a  sequenc e o f picture s t o sho w tha t thes e tw o tan -
gles are equivalent . 

On the other hand, the tangle 3 2 -4 i n Figure 2.19 has continued frac -
tion 

-4 + 2 + (1/3 ) 

which equal s -25 /7 . Thus , this tangle i s distinct from th e two equivalen t 
tangles - 2 3  2 and 3 -2 3 . 

In general , suppos e w e hav e tw o rationa l tangle s give n b y th e se -
quences o f integer s ijk  .  .  .  Im  and npq  .  .  .  rs.  We can compute th e cor -
responding continued fraction s 
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m + l / ( + l / ( J . .  .  l/(Jfc+l/(/+l/z))) ) an d 
s + l / ( r + l / ( .  .  .  l / t y+ l / (p+ l /n ) ) ) ) 

These fractions ar e both rational numbers . The two tangles are equivalen t 
if and only if these two rational numbers are the same. 

Exercise 2.18  Determin e which of the four rationa l tangles in Figure 2.23 
are equivalent . 

YP< 1> yzx=K  5?r 
Figure 2.23 Whic h of these tangles are equivalent? 

The proof tha t tw o rational tangle s ar e equivalen t i f and onl y i f thei r 
continued fraction s yiel d th e same rationa l number i s difficult . I f you ar e 
interested, a  proof appear s i n Burde and Zieschan g (1986 ) (see Suggeste d 
Readings for Chapter 1). 

Exercise 2.14  Sho w tha t the rational tangle 2 1 a^a2 .  . .  a n i s equivalen t 
to the rationa l tangle - 2 2  fl 1a2 •  •  •  fl nboth b y using continued frac -
tions and by drawing a picture. 

If w e clos e of f th e ends o f a  rationa l tangl e a s i n Figur e 2.24 , we cal l 
the resulting link a  rational link. So for instance , the figure-eight  kno t is a 
rational knot , with rationa l tangl e 2 2 (Figure 2.24) . We can us e ou r nota -
tion fo r rationa l tangle s t o denote th e corresponding rationa l knot . In th e 
table at the end of the book, you can see this notation applied t o the knots. 
We call this notation Conway's notation. 

a b 
Figure 2.24 (a ) A rational link, (b) The figure-eight  knot . 
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Exercise 2.15*  Determin e a  Conway' s notatio n fo r eac h o f th e knot s i n 
Figure 2.25. (You do not need to use the given projections. ) 

Figure 2.25 Wha t is the Conway notation for these knots? 

Exercise 2.16  (a ) Show tha t a  rational lin k has eithe r on e o r two compo -
nents. 

(b) For which set s o f Conwa y notation s d o th e correspondin g ra -
tional links have two components ? 

Exercise 2.17*  Sho w that any rational link is alternating (by showing tha t 
it has an alternating projection) . 

We ca n us e th e rationa l tangle s t o construc t mor e complicate d tan -
gles. Fo r instance , w e wil l defin e a  wa y t o "multiply " tw o tangle s t o 
obtain a  new tangle , as in Figure 2.26. We reflect the first tangle across its 
NW t o SE diagonal line , and the n w e glu e i t to the secon d tangle . Not e 
that this definition o f multiplication fit s in nicely with our definition o f a 
rational tangle. Note also that multiplying a  rational tangle by an intege r 
tangle will always generate a  rational tangle . We can think of the rationa l 
tangle 3 2 as comin g fro m multiplyin g togethe r th e tw o tangle s 3  and 2 . 
Moreover, i f we ever want to reflect a  tangle across its NW to SE diagonal 
line, we can simply multiply i t by the tangle 0. 

Ti 

Figure 2.26 Multiplyin g tangles . 

We can also "add" together two tangles, as in Figure 2.27. As an exam-
ple, note tha t th e kno t 8 5 can be written a s the kno t correspondin g t o th e 
tangle 30 +  3 0 +  20 , as it is simply the sum of these three rational tangles. 



48 Th e Knot Book 

If w e multipl y eac h tangl e i n a  sequenc e o f tangle s b y 0 , an d the n ad d 
them al l together, we denote the resultant tangl e by the sequence of num -
bers that stand for the original tangles, only now separated by commas. So 
we would denote the tangle for 85 by 3,3,2 (Figur e 2.28). (A knot obtained 
from a  tangl e represente d b y a  finite  numbe r o f integer s separate d b y 
commas is often calle d a pretzel knot.) 

Figure 2.27 Addin g tangles. 

Figure 2.28 Th e knot 85 has Conway notation 3,3,2 . 

Exercise 2.18  Dra w th e tangle s 2 , -32 , 41 and - 2 3 , 1, 42 and th e corre -
sponding knot s obtaine d b y connectin g th e N W strin g t o th e N E 
string and the SW string to the SE string. 

Numerous additiona l example s appea r i n th e appendi x table . S o w e 
have th e operation s o f additio n o f tangle s an d multiplicatio n o f tangles . 
We will cal l any tangle obtained b y the operations o f addition an d multi -
plication on rational tangles an algebraic tangle. 

Exercise 2.19  Dra w the algebraic tangle (3,2,1)«(1,2,2) . 

An algebrai c lin k i s simply a  link forme d whe n w e connec t th e N W 
string t o the NE string and th e SW string t o the SE string o n an algebrai c 
tangle. W e denot e th e lin k th e sam e wa y w e denot e th e correspondin g 
tangle. (Such a link is also sometimes called an arborescent link. ) 

Exercise 2.20  Sho w tha t a n algebrai c kno t wit h Conwa y notatio n con -
taining no negative signs must be an alternating knot . 
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These algebrai c tangle s ar e behavin g a  lo t lik e th e rea l numbers . W e 
can add tw o of them o r multiply tw o of them. But the real numbers hav e 
an element 0  so that adding 0 to a number doesn' t change the number. We 
call 0 an additive identity for the real numbers. 

Exercise 2.21  I s there an additive identity for tangles ? 

The rea l number s als o hav e th e numbe r 1  s o tha t multiplyin g an y 
number by 1 doesn't change it. We call 1 a multiplicative identity . 

Exercise 2.22  I s there a multiplicative identit y for tangles? Is it the sam e 
if you multiply a tangle by it on the right side or the left side ? 

There ar e difference s betwee n th e structur e o f th e rea l number s an d 
the structure of algebraic tangles. For instance, multiplication o n tangles is 
not commutative. It's not true that ab -ba fo r al l tangles. Multiplication o n 
tangles is also not associative. Usually, it's not true that (ab)c  = a(bc). More-
over, we don't have inverses. In the real numbers, there is always an addi -
tive inverse , s o i f c  i s a  rea l number , — c is it s additiv e inverse , tha t is , 
c +  -c =  0. But for a  tangle T, in general, there is no inverse tangle, no tan -
gle that when added to T gives back the trivial tangle 0. 

Although man y tangle s are algebraic, there are tangles that are not al -
gebraic. For instance, the tangle in Figure 2.29 is not algebraic. 

While we ar e discussing tangles , let's mention anothe r wa y t o obtai n 
new knots, called mutation. Suppose we have a knot K that we think of as 
being formed fro m tw o tangles , as in Figure 2.30. We form a  new kno t b y 
cutting the knot open along four point s on each of the four string s comin g 
out o f Ti,  flipping T 2 over, and gluin g th e four string s back together . Th e 
resulting kno t look s lik e Figur e 2.31a . We could als o cu t th e fou r string s 
coming ou t o f T 2, flip T 2 lef t t o right , an d the n glu e th e string s bac k to -
gether as in Figure 2.31b. If we did both operations in turn, it's as if we ro-
tated th e tangle 18 0 degrees and the n reglued i t as in Figure 2.31c. Any of 
these thre e operation s i s calle d a  mutation , an d th e thre e resultan t knot s 
together with the original knot are call mutants of one another. Figure 2.32 
shows two famous mutants called the Kinoshita-Terasaka mutants . 

A 
Figure 2.29 Thi s tangle is not algebraic. 
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Figure 230 A  kno t formed fro m tw o tangles. 

Figure 231 Mutan t knots. 

Figure 232 Th e Kinoshita-Terasaka mutants . 

Exercise 2.23  Sho w tha t mutation applied t o an alternating projection o f 
a knot always yields an alternating knot . 

Exercise 2.24  Sho w tha t th e mutatio n o f a  kno t i s always anothe r knot , 
rather than a link. 

Exercise 2.25  Sho w tha t i f we hav e thre e tangle s a s in Figur e 233a , w e 
can mutate several times in order to permute the tangles. Note that w e 
can then permute n  tangles in a row. 



Tabulating Knots 5 1 

a b 

Figure 233  Sho w tha t thes e knot s ar e related throug h a  sequence o f mu -
tations. 

Exercise 2.26  Sho w that the two knots in Figure 2.34 are related throug h 
a sequence of mutations. 

Figure 234 Two  nasty mutants. 

Although mutatio n ca n tur n on e kno t int o another , i t canno t tur n a 
nontrivial kno t int o th e trivia l knot . A t least , w e don' t hav e t o worr y 
about tha t possibility . Still , mutan t knot s ar e som e o f th e mos t difficul t 
knots t o tell apart . We discuss the m agai n i n Chapter 6 . In Chapter 7 , we 
use tangles to help us understand knottin g in DNA. 

2.4 Knot s and Planar Graphs 

In thi s section, we introduce a  notation fo r kno t projections tha t ha s bee n 
useful i n th e pas t fo r kno t tabulation . I t provide s a  bridge betwee n kno t 
theory an d grap h theory , wit h th e potentia l fo r commerc e i n bot h direc -
tions. 

What i s a graph? I t consists of a  set of points called vertice s and a  se t 
of edge s tha t connec t them. Here we ar e interested i n planar graphs , tha t 
is, graphs tha t lie in the plane, as in the firs t tw o examples in Figure 2.35. 
From a  projectio n o f a  kno t o r link , w e creat e a  correspondin g plana r 
graph in the following way . First shade every other region of the link pro-
jection so that the infinite outermos t region is not shaded (Figur e 2.36). 
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Figure 2 35 Som e graphs. 

Figure 2 36 Shade d link projections. 

Exercise 2.27  Prov e tha t an y lin k projectio n ca n b e shade d i n th e 
checkerboard manner portrayed in Figure 2.36. 

Put a vertex at the center of each shaded region and then connect with 
an edge any two vertices that are in regions that share a crossing (Figure 
2.37). This is the graph corresponding to our projection. There is only one 
problem. It doesn't depend in any way on whether a  crossing is an over-
crossing o r a n undercrossing . S o we defin e crossing s t o b e positiv e o r 
negative depending o n which way they cross as in Figure 2.38. Now we 
label eac h edg e i n th e plana r grap h wit h a  +  o r a  - , dependin g o n 
whether the edge passes through a  + crossing or a - crossing . We call the 
result a signed planar graph (Figure 2.39). (Note that this sign convention 
is dependent from the way that we labeled crossings with ±  I s when we 
were computing linkin g number i n Section 1.4. ) W e now hav e a  way t o 
turn any link projection into a signed planar graph. 

ttJ-V] 
Figure 237 A  graph from a knot projection. 
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Figure 238 Sign s on crossings. 

Figure 239 A  signed planar graph from a knot projection. 

Exercise 2.28 Tur n the knot projection in Figure 2.40 into a signed planar 
graph. 

Figure 2.40 Fin d the corresponding signed planar graph. 

What if we want to go in the other direction? Can we turn any signed 
planar grap h int o a  kno t projection ? Certainl y Startin g wit h th e signe d 
planar graph , put a n x  across each edge as in Figure 2.41b. Connect the 
edges inside each region of the graph as in Figure 2.41c. Shade those areas 
that contai n a  vertex . Then , a t eac h o f th e x's,  pu t i n a  crossin g corre -
sponding to whether the edge is a + or a - edge . The result is a link (Fig-
ure 2.42). 
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Figure 2.41 Turnin g a signed planar graph into a link. 

Figure 2.42 A  lin k generated from a  signed planar graph . 

8xercise 2.29  Determin e the link projection correspondin g t o the signe d 
planar graph in Figure 2.43. 

Figure 2,43 Wha t link projection does this signed planar graph represent ? 

Exercise 2.30  Sho w tha t a  link projectio n i s alternating i f an d onl y i f al l 
the edge s i n th e correspondin g signe d plana r grap h hav e th e sam e 
sign. 

Thus, we now have a way to go from kno t projections to signed plana r 
graphs an d bac k again . I n particular , w e ca n tur n question s abou t knot s 
into question s abou t graphs . Fo r example , on e o f th e ope n problem s i n 
knot theory i s to find a  practical algorithm fo r determinin g i f a projectio n 
is a projection o f the unknot (se e Section 1.1) . This is equivalent t o askin g 
whether o r no t ther e i s a  sequenc e o f Reidemeiste r move s tha t take s u s 
from th e given projection to the projection of the unknot . 
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But we ca n turn kno t an d lin k projection s int o signe d plana r graphs . 
We can turn Reidemeiste r move s into operations on signed plana r graphs . 
The question of whether kno t projections ar e equivalent under Reidemeis -
ter move s become s on e o f whethe r signe d plana r graph s ar e equivalen t 
under operations that the Reidemeister moves become. 

Exercise 2.31  Wha t do the Reidemeister move s become when translate d 
into operation s o n signe d plana r graphs ? (Mak e sur e yo u conside r 
what happens when different region s are shaded.) 

We will come back to signed plana r graph s whe n w e look a t the rela -
tionship between knot theory and statistical mechanics in Section 7.4. 
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Invariants of 

Knots 

3 . 1 Unknottin g Number 

In thi s chapter , w e introduc e severa l ne w invariant s fo r knots . We begin 
with a  very intuitiv e invariant , know n a s the unknottin g number . Notic e 
first o f al l that i f we changed th e crossing circled in Figure 3.1 , the knot 72 

would becom e th e unknot . Th e on e chang e o f crossin g completel y un -
knots th e knot . We say tha t 7 2 has unknottin g numbe r 1 . More generally , 
we say that a  knot K  has unknotting number n  if there exists a projectio n 
of the knot such that changing n  crossings in the projection turn s the kno t 
into the unknot an d ther e is no projection suc h that fewer change s woul d 
have turne d i t int o th e unknot . W e denot e th e unknottin g numbe r o f a 
knot by u(K). 

Figure 31 Th e knot 72 becomes the unknot. 
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Exercise 3.1  Fin d the unknotting number of the figure-eight knot . 

Exercise 3.2  Fin d a n infinit e famil y o f knots , al l o f whic h hav e unknot -
ting numbe r 1 . (You need no t prov e tha t th e knot s i n th e famil y ar e 
distinct.) 

Aside (fo r peopl e wh o kno w th e traditiona l definitio n o f unknottin g 
number): I n ou r definitio n o f th e unknottin g number , w e performe d al l 
the crossing s change s i n a  single projection o f th e knot . Traditionally , th e 
unknotting numbe r i s defined t o be the leas t number o f crossin g change s 
necessary to change a knot into an unknot, where we can perform th e firs t 
crossing change in one projection o f the knot, then d o an ambien t isotop y 
of th e resultin g projectio n t o a  ne w projectio n an d chang e th e secon d 
crossing i n tha t projection . W e can the n d o anothe r ambien t isotop y t o a 
new projectio n befor e w e chang e ou r thir d crossing , and continu e i n thi s 
manner unti l we have done al l n  crossing changes . That these two defini -
tions ar e equivalen t follow s fro m th e fac t tha t w e ca n kee p trac k o f eac h 
crossing change in the second definitio n wit h an arc that runs to and fro m 
the tw o point s o n th e kno t wher e th e crossin g chang e occurs . As w e d o 
our ambien t isotop y t o anothe r projection , w e carr y alon g thes e arcs , 
stretching an d deformin g the m a s necessary . B y the tim e we ar e finishe d 
with ou r n  crossing changes , we have n  such arcs . However, w e ca n the n 
shrink eac h o f thes e arc s down t o a  tiny arc , pulling th e kno t along , an d 
make a  single projection o f the knot s o that eac h ar c appears a s a  vertica l 
arc running from th e top of a crossing to the bottom. Then, changing thes e 
crossing i n thi s singl e projectio n i s equivalen t t o changin g th e crossing s 
one by on e an d allowin g ambien t isotop y t o occu r betwee n th e crossin g 
changes. 

The fact tha t ever y kno t ha s a  finite unknottin g numbe r follow s fro m 
the fact tha t every projection o f a  knot can be changed int o a projection of 
the unknot by changing some subset o f the crossings in the projection. Al-
though thi s fac t appeare d a s Exercis e 1.7 , let' s verif y it , since we ar e de -
pending on it here. 

Given a projection o f a knot, let's pick a starting point on the knot tha t 
for convenienc e i s not a t a  crossing , and let' s pic k a  directio n t o travers e 
the knot. Now, beginning at that point, we head along the knot in our cho-
sen direction . Th e firs t tim e tha t w e arriv e a t a  particula r crossing , w e 
change th e crossin g i f necessar y s o tha t th e stran d tha t w e ar e o n i s 
the overstrand . The n w e continu e throug h tha t crossin g o n ou r merr y 
way alon g th e knot . I f w e com e t o a  crossin g tha t w e hav e alread y 
been throug h once , we d o no t chang e tha t crossing , bu t rathe r continu e 
through i t o n wha t mus t necessaril y b e th e understrand . Onc e w e hav e 
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returned t o ou r initia l startin g point , w e hav e a  projectio n o f a  knot tha t 
was obtaine d fro m ou r origina l kno t by changin g crossing s an d tha t wil l 
in fact be the trivial knot, as we will demonstrate (Figure 3.2). 

RXJ> Q/ 

a b 

Figure 3.2 (a ) Original projection, (b ) Altered projection . 

To see that thi s i s the trivia l knot , we view i t in three-space . Think of 
the z axis as coming straigh t ou t o f th e projection plan e towar d us . Start -
ing a t th e initia l poin t again , w e plac e tha t poin t i n three-spac e wit h z -
coordinate z  =  1 . Now, as we traverse the knot, we decrease the z-coordi -
nates o f each of th e points on the knot unti l we ge t almos t back to wher e 
we started. That last point will have z-coordinate z = 0 . But, since we gave 
the initial point and the last point z-coordinates z =  0  and z =  1 , and thes e 
are supposed t o be the same point, we had better put in a vertical bar fro m 
one to the other to complete the knot (Figure 3.3). Note then that when w e 
look straigh t dow n th e z  axi s a t ou r knot , w e se e th e projectio n tha t w e 
had change d th e crossing s t o create . But when w e loo k a t ou r projectio n 
from th e side , we se e a  projectio n with  no  crossings.  Hence thi s kno t i s a 
trivial knot. 

2 = 1 

z = 0 

Figure 33 (a ) Altered projection , (b ) Partial sid e view, (c ) Side view. Th e 
altered projection is the trivial knot. 

Exercise 3.3  Fin d an inequality tha t relates u(K)  and th e minimum cross -
ing number c(K)  of the knot. 
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In general, it's very hard t o find the unknotting number o f a knot. For 
instance, i f w e chang e crossing s i n th e projectio n o f 7 4 in th e tabl e a t th e 
back of the book, it looks like the unknotting number i s 2 (which it is). But 
how d o w e kno w tha t ther e isn' t som e othe r projectio n o f 7 4 that ca n b e 
unknotted by only one crossing change? In order to prove that the unknot-
ting number i s 2, quite a bit more work would hav e to be done. For exam-
ple, i t wasn' t unti l 198 6 tha t Taiz o Kanenob u o f Kyush u Universit y an d 
Hitoshi Murakam i o f Osak a Cit y University , bot h i n Japan , prove d tha t 
the unknotting number o f the knot 83 is 2 (Figure 3.4). It's not hard to find 
two crossin g change s tha t mak e thi s projectio n int o th e unknot . (Fin d 
them.) But how d o we know ther e isn't some other projection o f this knot 
that ca n b e mad e int o th e unkno t wit h on e crossin g change ? Kanenob u 
and Murakam i applie d th e powerfu l Cycli c Surger y Theorem , du e t o 
Marc Culle r an d Pete r Shale n (bot h o f th e Universit y o f Illinoi s a t 
Chicago), and Camero n Gordo n an d Joh n Lueck e (bot h o f th e Universit y 
of Texas at Austin), to prove that no such projection exists . 

CO O 

Figure 3.4 Th e unknotting number of 83 is 2. 

Here's an interesting question: Can a  composite knot have unknottin g 
number 1  (Figure 3.5)? 

Figure 3.5 Ca n a composite knot be unknotted wit h one crossing change ? 

We might expect the answer to be no, for i f we have a composite knot , 
changing on e crossin g migh t allo w u s t o untangl e on e o f th e tw o facto r 
knots tha t mak e u p th e composit e knot , althoug h i t seem s unlikel y tha t 
the one crossing change would allo w us t o untangle both facto r knots . In 
fact, th e answe r i s no , bu t i t too k 10 0 year s fo r someon e t o find  th e 
proof. In 1985 , Martin Scharleman n a t th e University o f California-Sant a 
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Barbara (Scharlemann , 1985 ) proved tha t a  knot with unknotting numbe r 
1 is prime. His proof i s very technical. 

c^(Unsolved Questions 

1. Fin d a simple proof tha t a knot with unknotting number 1  is prime. 

2. I s i t tru e tha t a  kno t wit h unknottin g numbe r 2  cannot be a  com -
posite kno t mad e fro m thre e facto r knots. ? I s i t true tha t a  kno t wit h 
unknotting numbe r n  canno t b e a  composit e kno t wit h n  +  1  facto r 
knots? 

3. I f K is a knot with unknotting number 1 , is there always a  crossin g 
in any minimal crossin g projection tha t we ca n change t o make i t th e 
unknot? 

4. I f K  i s a n alternatin g kno t wit h unknottin g numbe r 1 , is ther e al -
ways a  crossin g i n eac h alternatin g projectio n tha t w e ca n chang e t o 
make i t th e unknot ? (Unsolve d Questio n 3  i n fac t implie s Unsolve d 
Question 4.) 

5. Ol d conjecture: u(K!#K2) = u(K{) + u(K 2). Note that it is certainly al-
ways tru e tha t u(Ki#K 2) ^  u(K{)  +  u(K 2). (Sho w this. ) Scharlemann' s 
result says the conjecture i s true in the case u(Ki#K2) =  1. Perhaps yo u 
could prove it when u(Ki#K2) =  2. 

6. Ca n the unknotting number u(K ) of any knot be realized by chang -
ing a  single crossing in a minimal crossing projection, re-arranging th e 
resulting projectio n t o hav e minima l crossin g number , changin g an -
other single crossing, rearranging to a minimal crossing projection, etc. 
u(K) times? (Note that when u(K) = 1, this is just Unsolved Question 3.) 

Exercise 3  A Sho w that a  knot like the one in Figure 3.6 is alternating b y 
finding a n alternatin g projection . The n sho w tha t i t ha s unknottin g 
number 1  by showing that there is a crossing in this projection tha t can 
be changed to yield the trivial knot. 

Figure 3.6 Knot s o f thi s typ e ar e alternatin g an d hav e unknottin g num -
ber 1. 
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One would expec t that the unknotting number o f a  knot is realized i n 
a projectio n o f th e kno t wit h a  minimal numbe r o f crossings . Amazingl y 
enough, this is not always the case. In 1983, Steve Bleiler and Y. Nalsanishi 
independently discovere d th e followin g example . Her e i s a  kno t wit h 
Conway notatio n 51 4 (Figur e 3.7) . I t i s know n tha t thi s kno t canno t b e 
drawn wit h fewe r crossings , s o it s minima l crossin g numbe r i s 10 . It i s 
also known tha t this is the only projection (u p to planar isotop y and mir -
ror reflection) o f this knot with 10 crossings. 

Figure 3.7 Th e knot 514. 

Exercise 3.5  Chec k that it takes at least three crossing changes in the pro-
jection in Figure 3.7 to unknot this knot. 

Here is another projection of the same knot (Figure 3.8). It has Conway no-
tation 2 —2 2 —2 2 4. (Check for yoursel f tha t the two continued fraction s 
give the same rational number.) 

Figure 3.8 Th e knot 2 - 2 2 - 2 2 4 . 

Exercise 3.6  Sho w that the projection o f the knot in Figure 3.8 can be un -
knotted by changing only two crossings. 

In fact , on e ca n prove tha t the unknotting numbe r o f th e kno t i n Fig-
ure 3.8 is in fact 2. Thus, the unknotting number o f this knot is realized by 
a projection that is not minimal! That's surprising . 

These results were generalized by a Princeton University undergradu -
ate named James Bernhard, who showe d tha t there were an infinite num -
ber of knots with this property. (Bernhard 1994). 
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While we ar e a t it , let's discus s a  concept relate d t o unknotting num -
ber. Given a  projection o f a  knot , define a  fc-move to be a  local change i n 
the projectio n tha t replace s tw o untwiste d string s wit h tw o string s tha t 
twist around eac h other with k crossings in a right-handed manner . A —  k-
move will be the same, except that the twist is a left-handed twis t (Figur e 
3.9). (Again, if k  is positive, we make the overstrand i n the new crossing s 
have positive slope.) 

II 9 II ^ 
II 8  I I 8 

a b 

Figure 3.9 (a ) A 5-move. (b) A — 5-move. 

We say tha t tw o knot s o r links ar e fc-equivalent  i f we ca n ge t from a 
projection o f on e t o a  projection o f th e othe r throug h a  serie s o f fc-moves 
and —  it-moves. We allow ourselves t o change th e projections vi a ambien t 
isotopies between the various moves that we perform . 

Exercise 3.7  Sho w tha t ever y lin k i s two-equivalen t t o th e trivia l lin k 
with the same number of components. 

c©(Unsolved Conjecture  1 

Show tha t ever y lin k i s three-equivalent t o a  trivia l link . Thi s conjec -
ture i s due t o Y. Nakanishi o f Kob e University. It' s surprising tha t n o 
one has succeeded in proving or disproving the conjecture yet . 

Exercise 3.8  Sho w that the knots in Figure 3.10 are each three-equivalen t 
to a trivial link. 

Figure 3.10 Knot s that are three-equivalent to trivial links, (a) 3i- (b) 4X. (c) 942. 
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GŜ  (Unsolved Conjecture 2 
Show tha t ever y kno t i s four-equivalen t t o th e trivia l knot . Thi s i s 
known t o be tru e fo r rationa l knots , pretze l knots , an d close d three -
string braids (which we discuss in Section 5.4). 

Exercise 3. 9 Sho w that if a link is tricolorable, then any link that is three-
equivalent to it must also be tricolorable. 

Note that if the first unsolved conjectur e i s proved t o be true, then th e 
links with tricoloratio n ar e exactly the links tha t ar e three-equivalen t t o a 
trivial link with more than one component. The links without tricoloratio n 
would b e exactl y thos e link s three-equivalen t t o th e trivia l lin k o f on e 
component, namel y th e unknot . (Se e Kirby , 1993 , p . 7 5 fo r mor e o n 
k-equivalence.) 

3.2 Bridg e Number 

In Figure 3.11, we show a pair of unusual projections of the trefoil and figure-
eight knots , respectively . I n thes e pictures , thin k o f th e knot s a s cuttin g 
through the projection plane, rather than lying in it. Think of the darkened 
portions o f the knots as lying above the plane and th e rest of the knots a s 
lying below th e plane . Eac h kno t intersect s th e plan e i n fou r vertices . I n 
both o f th e pictures , ther e ar e tw o unknotte d arc s fro m eac h kno t lyin g 
above th e plane . Thi s i s th e leas t numbe r o f suc h unknotte d arc s i n an y 
projection o f thes e knots . Hence , w e sa y thes e knot s bot h hav e bridg e 
number 2. 

a b 

Figure 3.11 Th e (a) trefoil and (b ) figure-eight  knots . 

In general , given a  projection o f a  knot t o a  plane, define a n overpas s 
(Figure 3.12a) to be a subarc of the knot that goes over at least one crossing 
but never goe s under a  crossing. A maximal overpass i s an overpass tha t 
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could no t be made an y longe r (Figur e 3.12b) . Both o f it s endpoints occu r 
just before we go under a  crossing. The bridge number o f the projection i s 
then th e number o f maximal overpasse s i n the projection (thos e maxima l 
overpasses formin g th e bridges  ove r th e res t o f th e knot) . Note tha t eac h 
crossing i n the projection mus t have som e maximal overpas s tha t crosse s 
over it. The bridge number of K, denoted b(K),  is the least bridge numbe r 
of all of the projections of the knot K. 

a b 

Figure 3.12 (a ) An overpass, (b) A maximal overpass . 

Exercise 3.10  Sho w that if a knot has bridge number 1 , it must be the un-
knot. 

Exercise 3.11  Sho w that the knot 52 has bridge number 2. 

Exercise 3.12  (a ) Show tha t the bridge number b(K)  of a  nontrivial kno t 
K is always less than o r equa l to the leas t number o f crossings i n an y 
projection o f th e knot . (Hint:  I t ma y hel p t o thin k abou t th e case s 
where the projection is alternating or nonalternating separately. ) 

(b)* Show tha t th e bridg e numbe r b(K)  of a  nontrivia l kno t K  i s 
strictly less than the least number o f crossings in any projection o f th e 
knot. 

Knots that have bridge number 2 are a special class of knots, known a s 
two-bridge knots . Suppose we cut a  two-bridge knot open along the pro-
jection plane . We would b e lef t wit h tw o unknotte d untangle d arc s fro m 
the kno t abov e th e plane , corresponding t o the tw o maxima l overpasses , 
and tw o unknotte d untangle d arc s fro m th e kno t belo w th e plane . Not e 
that the y ar e unknotted an d untangled , sinc e they ca n have no crossing s 
with eac h other . Al l o f th e crossing s cam e fro m a  maximal overpas s an d 
one of these arcs. So, if we want to construct al l possible two-bridge knots , 
we just glu e the endpoints o f two unknotted untangle d string s abov e th e 
plane t o th e endpoint s o f tw o unknotte d untangle d string s belo w th e 
plane. The tricky part i s that although the strings to each side of the plan e 
are individuall y unknotted , the y ca n twis t aroun d eac h othe r an d them -
selves. So from the side view, we see something like Figure 3.13. 
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Figure 3.13 A  two-bridg e knot (side view). 

Figure 3.14 shows the side view o f the two-bridg e representation s of 
the trefoi l an d figure-eigh t knot s fro m Figur e 3.11 . Given a  pictur e o f a 
two-bridge kno t a s i n Figur e 3.13 , we ca n alway s fre e on e o f th e string s 
and redraw our projection as in Figure 3.15. Now we can see that this two-
bridge knot is in fact simply a rational knot, by turning every other intege r 
tangle horizontal , startin g wit h th e botto m on e (Figur e 3.16) . In  fact, the 
two-bridge knots are exactly the rational knots. 

TO 
V 

a b 

Figure 3.14 Anothe r view of the (a) trefoil and (b ) figure-eight  knots . 

Figure 3.15 Two-bridg e knot redrawn . 

i9 
Figure 3.16 A  two-bridg e knot is a rational knot. 
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The two-bridge knots are a very well understood clas s of knots. Often , 
a property tha t is suspected t o hold for al l knots is first proved t o hold fo r 
this particula r clas s o f knots . For instance , Claus Erns t an d Dewit t Sum -
ners proved tha t the number o f distinct two-bridge knots of n  crossings i s 
at leas t (2 n~2 —  l ) /3. Since two-bridge knot s ar e known t o be prime, thi s 
implies tha t th e numbe r o f distinc t prim e knot s o f n  crossing s i s a t leas t 
(2n~~2 — l ) /3 . Note that we are counting a knot and its mirror image as dis-
tinct knots if they are not equivalent . 

The first three-bridge knot in the appendix table is 8i0 (Figure 3.17). 

Figure 3.17 Th e knot 8i0 is a three-bridge knot . 

Exercise 3  A3 Fin d a  picture o f 8i 0 tha t show s tha t i t i s a t mos t a  three -
bridge knot . 

c©(Unsolved Question 

Classify th e three-bridge knots . The two-bridge knot s are wel l under -
stood, simply corresponding t o the rational knots. No one has yet un -
derstood all of the three-bridge knots. 

In 1954 , a  Germa n mathematicia n name d H . Schuber t prove d tha t 
b{K^K2) =  biKx) + b(K 2) ~ 1 . 

Exercise 3.14  Explai n ho w Schubert' s resul t implie s tha t rationa l knot s 
are all prime. 

3.3 Crossin g Number 

We have discussed this invariant before. The crossing number of a knot K, 
denoted c{¥),  is the least number o f crossings that occu r in any projectio n 
of the knot. 

How do we determine the crossing number o f a knot K? First, we fin d 
a projectio n o f th e kno t K  wit h som e numbe r o f crossing s n . The n w e 
know th e crossin g numbe r i s n  o r smaller . I f al l o f th e knot s wit h fewe r 
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crossings than n are known, and if K does not appear in the list of knots of 
fewer tha n n  crossings , the n K  must hav e crossin g numbe r n . So , for in -
stance, the kno t 7 3 has crossin g number 7  since i t has a  projection wit h 7 
crossings and i t is distinct from al l the knots of fewer than 7 crossings (Fig-
ure 3.18). (This last fact is very difficult an d gets at the essence of knot the-
ory. How d o yo u prov e tha t 7 3 does no t equa l 3i , 4i , 5y  5^  6\,  62 , 63 or 
3!#3i? The answer will have to wait until Chapter 7 , when we utilize poly-
nomials to distinguish these knots.) 

K 5oO 
Figure 3.18 Th e knot 73 has crossing number 7 . 

In general , i t i s very difficul t t o determin e th e crossin g numbe r o f a 
given knot . I f w e hav e a  kno t i n a  projection wit h 1 5 crossings, how ca n 
we hope to show tha t i t can't be drawn with fewer tha n 15 crossings? No-
body yet knows what all the knots of 14 crossings are. 

Sometimes, we ca n stil l determin e th e crossin g number . I n 1986 , Lou 
Kauffman (Fro m th e Universit y o f Illinoi s a t Chicago) , Kuni o Murasug i 
(from th e Universit y o f Toronto) , an d Morwe n Thistlethwait e (fro m th e 
University o f Tennessee) independently prove d th e first  major resul t con -
cerning crossin g number . Cal l a  projection o f a  kno t reduce d i f ther e ar e 
no easil y remove d crossings , as in Figur e 3.19 . Kauffman, Murasugi , an d 
Thistlethwaite prove d tha t a n alternatin g kno t i n a  reduce d alternatin g 
projection o f n  crossings has crossing number n.  There cannot be a  projec-
tion o f suc h a  knot with fewe r crossings . They utilized th e Jones polyno-
mial fo r knot s i n orde r t o prove this . We discuss th e Jones polynomial i n 
Chapter 6 . 

X ) O R X ) O R Xm  O R > 
Figure 3.19  Thes e crossing s ar e easil y removed , lowerin g th e crossin g 
number. 

Since we ca n tel l by just lookin g a t a n alternatin g projectio n whethe r 
or not it is reduced, and sinc e we can lower the number o f crossings if it is 
not reduced , we ca n tel l the crossing number o f any  alternating knot . Fo r 
instance, the crossing number o f the knot 7 3 is in fact 7  since it appears i n 
Figure 3.18 in a reduced alternating projection o f 7 crossings. Here is an al-
ternating kno t i n a  reduced alternatin g projectio n o f 2 3 crossings (Figur e 
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3.20). Hence its crossing number i s 23. There cannot be a projection o f thi s 
knot with fewer tha n 23 crossings. 

Figure 3.20 Thi s knot has crossing number 23. 

The question of determining the crossing number fo r a  nonalternating 
knot i s stil l very much open . In fact , w e can' t ye t say anythin g abou t th e 
crossing number of a composite knot . 

c&feig (Unsolved Question 

Show tha t th e crossin g number o f a  composite kno t i s the su m o f th e 
crossing numbers o f th e facto r knots , that is , c(Ki#K2) = c(Ki)  +  c(K2) 
(Figure 3.21). 

Figure 3.21 I s c(K1#K2) = c(Ki) + c(K2) for a composite knot? 

This problem has been open for 10 0 years. Note that Kauffman, Mura -
sugi, an d Thistlethwaite' s resul t implie s tha t th e conjectur e doe s hol d 
when Ki#K2 is an alternating knot (see Kauffman, 1988) . 

Exercise 3.15  Sho w tha t i f K t an d K 2 ar e alternating , the n s o i s KtfK* 
Hence c(X1#X2) =  c(Ki)  +  c(K 2) holds when Ki  and K2 are alternating, even 
if Ki#K2 does not appear alternating (Figure 3.22). 

Figure 3.22 Ki#K 2 appears nonalternating . 

We will come back to crossing number when we discuss particular cat -
egories of knots. 
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Surfaces and Knots 

4.1 Surface s without Boundary 

In this chapter, our goal is to use surfaces t o help understand an d distin -
guish knots. But first of all, what do we mean by a surface? Certainly , all 
of the objects in Figure 4.1 qualify as surfaces. Note that these are not solid 
objects. They are just the surface of the object. For instance, an example of 
a surfac e i s the glaze on a  doughnut , not  th e doughnu t itself . (Kee p in 
mind that we think of the glaze as being infinitely thin. ) We call the sur-
face of a doughnut a torus. 

Figure 41 Som e surfaces. 
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What is the property tha t surfaces hav e in common? At any point on a 
surface, there is a small region on the surface surroundin g an d containin g 
the poin t tha t look s lik e a  dis k (Figur e 4.2) . The dis k doesn' t hav e t o b e 
flat, i t ca n b e deformed , bu t i t stil l mus t b e a  disk . (I f yo u irone d it , i t 
would b e a flat disk.) For example, in Figure 4.3 we see some objects tha t 
are not  surfaces. They fail to be surfaces becaus e each of them has at leas t 
one point suc h tha t th e regio n o n th e objec t surroundin g tha t poin t doe s 
not for m a  dis k o n th e object , n o matte r ho w smal l a  regio n w e take . I n 
each o f th e thre e examples , ther e exis t point s wit h "neighborhoods " 
around them, appearing as in Figure 4.4. 

Figure 4.2 Eac h point on a surface is surrounded by a disk. 

a b e 
Figure 43 Thes e are not surfaces. 

00 gp 
a b  c 

Figure 4.4 Nondis k neighborhoods of points. 
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Another nam e for a  surface i s a two-manifold. A  two-manifold i s de-
fined t o be any objec t suc h tha t every poin t i n tha t objec t ha s a  neighbor -
hood in the object that is a (possibly nonflat) disk . 

Exercise 4.1  Base d o n the definition fo r two-manifolds , decid e wha t th e 
definition shoul d b e for a  one-manifold. Fin d tw o different one-mani -
folds. 

We wil l eventuall y generaliz e t o three-manifold s i n Chapte r 9 . (An y 
thoughts o n wha t th e definitio n o f a  three-manifol d shoul d be ? Our spa -
tial universe appears to be a three-manifold. ) 

In order to apply surfaces t o the study of knots, we first have to deter-
mine the possibilities for surfaces. In what follows, we think of all surface s 
as bein g mad e o f rubber , an d henc e deformable . Thus , w e conside r a 
sphere and a  cube to be equivalent surfaces , since we could pul l out eigh t 
points o n a  rubber spher e t o make i t loo k lik e a  cube , without havin g t o 
do any cutting and pastin g (se e Figure 4.5). This idea of treating objects a s 
if they were made o f rubber i s the fundamenta l concep t behind topology . 
Topologists ar e intereste d i n th e propertie s o f object s tha t remai n un -
changed, even as the object is deformed . 

cr 
Figure 4.5 A  rubber sphere is equivalent to a cube. 

Similarly, w e conside r eac h o f th e surface s show n i n Figur e 4. 6 to b e 
equivalently place d i n spac e becaus e w e coul d ge t fro m an y on e t o an y 
other b y a  rubbe r deformation . Mathematician s cal l such a  rubbe r defor -
mation a n isotopy . (Isotop y i s a  generi c nam e fo r a  rubbe r deformation , 
whether it' s a  deformatio n o f a  knot o r a  surface. ) Tw o surfaces i n spac e 
that ar e equivalen t unde r a  rubbe r deformatio n ar e calle d isotopi c sur -
faces. 



74 Th e Knot Book 

Figure 4.6 Thes e are isotopic surfaces . 

Exercise 4.2  B y drawing a  sequence o f picture s t o depic t th e rubber de -
formations, sho w tha t th e three surface s i n space in Figure 4.7 are al l 
isotopic to one another. 

Figure 4 J Thes e three surfaces are all isotopic. 

The tw o surface s i n Figure 4.8 are no t isotopic , however , because w e 
could not deform th e first to look like the second without doin g some cut -
ting an d pasting . ( A proof tha t the y ar e no t isotopi c woul d requir e a  lo t 
more work.) 

Figure 4.8 Thes e are nonisotopic surfaces . 

In order t o better work with surfaces , we cu t them int o triangles . The 
triangles have to fit together nicely along their edges so that they cover the 
entire surface . The y canno t intersec t eac h othe r i n an y o f th e way s pic -
tured i n Figur e 4.9. The triangle s needn' t b e flat  wit h straigh t edges . Just 
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like all the other object s in topology, they are deformable. We can think of 
them a s disks wit h a  boundary mad e u p o f thre e edge s connectin g thre e 
vertices. We call such a division of a surface into triangles a  triangulation. 
Examples of triangulations of the sphere and th e torus are given in Figure 
4.10. 

0L <d> 
Figure 4.9 Triangle s cannot intersect like this. 

Figure 4.10 Triangulation s of the sphere and the torus. 

Given a  surface wit h a  triangulation, we can cut i t into the individua l 
triangles, keeping trac k o f th e origina l surfac e b y labelin g th e edge s tha t 
should b e glued back together , and placin g matching arrow s on the pair s 
of edges that are to be glued (Figure 4.11). 

OR 

K & • *$ 

Figure 4.11 Tw o representations of a torus. 
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We say that two surfaces ar e homeomorphic i f one of them can be tri-
angulated, then cut along a subset of the edges into pieces, and then glue d 
back togethe r alon g th e edge s accordin g t o th e instruction s give n b y th e 
orientations and label s on the edges, in order to obtain the second surface . 
For example , here are two homeomorphic copie s o f th e torus . We simply 
cut alon g a  subset o f th e edges o f a  triangulation tha t for m a  circle , kno t 
the resulting cylinder , and the n glu e the two circles back together (Figur e 
4.12). Notice that we didn't even draw the rest of the triangulation, since it 
is clear we can find a  triangulation o f the torus such that the circle that we 
just cut along is contained within the edges of the triangulation . 

Figure 4.12 Thes e two surfaces are homeomorphic . 

Figure 4.1 3 shows anothe r exampl e o f tw o surface s tha t ar e no t iso -
topic but tha t are homeomorphic. We can see the chain of cutting and glu -
ing tha t take s us from th e one surface t o the other . Again, we don' t actu -
ally nee d a  complet e triangulation , bu t rathe r a  se t o f circle s an d edge s 
that we cu t th e surface ope n along . We could alway s fin d a  triangulatio n 
that contained thi s set of circles and edges as part of the union of the set of 
edges. (The fact that these two surfaces ar e not isotopic is not obvious an d 
would take some work to prove.) 

Figure 4.13 Tw o homeomorphic surfaces . 
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Exercise 4.3  Sho w that the two surfaces in Figure 4.14 are homeomorphic 
by drawing a  sequence of pictures that show how to cut and past e th e 
first in order to get the second. 

Figure 414 Thes e two surfaces are homeomorphic. 

A sphere and a  torus are not homeomorphic (Figur e 4.15). There is no 
triangulation o f eithe r on e tha t ca n be rearrange d an d repaste d t o creat e 
the other surface. (There is clearly an inherent difference betwee n a  sphere 
and a  torus . Every close d loo p o n a  sphere cut s i t int o tw o pieces . How -
ever, there exist loops on a  torus that do not cu t i t into two pieces. Unfor -
tunately, we don't have time to prove that they are not homeomorphic. ) 

Figure 415 A  sphere and a torus. 

We could also have the surface of a two-hole doughnut o r a three-hole 
doughnut. Thes e possibilitie s ar e picture d i n Figur e 4.16 . None o f thes e 
four examples are homeomorphic to one another . 

Figure 416 Mor e surfaces . 
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Since we could just keep increasing the number of holes in our dough -
nuts, there are an infinite number of distinct (nonhomeomorphic) surfaces . 
We call the number o f holes in the doughnut th e genus o f the surface . So 
the sphere ha s genus 0  and th e torus ha s genu s 1 . The surfaces i n Figur e 
4.16 have genera 2  and 3 . Each of these surfaces ca n be placed i n space in 
different ways . For instance , we sa w tw o way s t o pu t a  torus i n space i n 
Figure 4.12 . Eve n thoug h bot h o f thos e surface s wer e tor i (plura l fo r 
torus), they were not isotopic, since there was no rubber deformatio n tha t 
would tak e us from th e one to the other. However, they were stil l homeo-
morphic surfaces , jus t place d i n spac e i n tw o differen t ways . W e cal l a 
choice o f ho w t o plac e a  surfac e i n spac e a n embeddin g o f th e surface . 
Figure 4.12 depicts two distinct embeddings of the torus in three-space. 

Figure 4.1 7 show s thre e distinc t embedding s o f a  genu s 3  surface i n 
space. Althoug h the y ar e al l homeomorphi c t o on e another , onl y tw o o f 
the three are isotopic to one another. Which two? You might think that it is 
the second an d thir d surfaces . In fact, i t is the first an d thir d surfaces . Re-
member, the surfaces ar e made o f highly deformabl e rubber . On the thir d 
surface, we can slide the end of one of the tubes along another tub e to un-
knot th e knotting . W e cal l th e thir d surfac e th e surfac e o f a  cube-with -
holes, a s i t i s th e surfac e o f th e soli d objec t obtaine d b y drillin g thre e 
wormholes out of a cube. 

Figure 417 Thre e genus 3 surfaces. 

Exercise 4A  Dra w a  series of pictures tha t show th e isotopy between th e 
first and third surfaces . 

Given a random surface in space, how do we tell what surface it is? (In 
the language of topology, what is its homeomorphism type?) It might be a 
sphere or torus, but i t is so mangled tha t we don't recognize it. One option 
is to cut and past e to simplify th e appearance o f ou r surfac e unti l we ca n 
identify it . But this technique requires us to make a clever choice of how to 
cut u p th e surfac e an d rearrang e th e piece s befor e regluing . I t woul d b e 
better i f ther e were a  method fo r recognizin g surface s tha t didn' t requir e 
the cut-and-paste technique . 
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Let's tak e a  triangulation o f th e surface . Le t V  be the number o f ver -
tices i n th e triangulation . Le t E  be th e numbe r o f edge s an d le t F  be th e 
number o f triangles . (F stands fo r faces . I t turns ou t tha t th e formula ca n 
also be applied when the faces are not just triangles, but are polygons with 
more than thre e edges.) We define th e Euler characteristic of th e triangu -
lation to be X = V  -  E  +  F . So, for example , in the case of the first trian -
gulation of the sphere in Figure 4.10, V =  6 , E = 12 , and F = 8 , so X = 6  -
12 + 8  = 2 . 

Sxercise 4.5  Comput e the Euler characteristic of the second triangulatio n 
of the sphere in Figure 4.10. 

Sxercise 4.6  Comput e th e Euler characteristi c o f th e triangulation o f th e 
torus in Figure 4.10. 

Notice that in Exercise 4.5 you obtaine d th e same answer tha t we ha d 
already obtained fo r the sphere using a different triangulation . In fact, thi s 
will always be the case. The Euler characteristi c depend s onl y on the sur -
face, no t o n th e particula r triangulatio n o f th e surfac e tha t w e use . Al -
though the rigorous proof i s a bit technical, let's take a look at the idea be-
hind the proof. 

Suppose that we have two different triangulation s o f the same surfac e 
S, call the m T^  and T 2. Let's plac e the m bot h o n th e surfac e a t th e sam e 
time, so that they are overlapping (Figur e 4.18). We will build a  new trian -
gulation T 3 of S  that "contains " each of T\  and T 2 within it . As we build i t 
up, we wil l show tha t i t has the same Euler characteristi c a s T\.  Since th e 
same argument can be used to show that it has the same Euler characteris -
tic as T 2, we wil l have show n tha t T i and T 2 have the same Euler charac -
teristic. 

Figure 4.18 (a ) Tt (b ) T2 (c) Tx U  T2 
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We wil l assum e tha t eac h edg e o f T t intersect s eac h o f th e edge s o f 
T2 a  finit e numbe r o f times . Ther e i s a  technica l proo f tha t th e edge s 
of T i ca n b e move d jus t slightly , t o mak e sur e tha t thi s i s th e case , 
but w e wil l no t g o int o i t a s i t i s to o time-consumin g an d woul d tak e 
us to o fa r afield . W e wil l als o assum e tha t th e vertice s o f T 2 d o no t lie 
on to p o f a  verte x o r edg e fro m Ty  whic h ca n b e mad e tru e b y movin g 
Ti slightly. 

We begi n t o buil d th e ne w triangulatio n T 3 b y startin g wit h T x (a s 
in Figur e 4.19a) . On e a t a  time , w e ad d t o th e vertice s o f T\  a  ne w se t 
of vertice s correspondin g t o wher e th e edge s o f T 2 cros s th e edge s 
of Tj . Eac h ne w verte x als o cut s a n edg e int o tw o edges . Sinc e whe n 
computing th e Eule r characteristic , th e numbe r o f vertice s i s adde d 
and th e numbe r o f edge s i s subtracted , th e Eule r characteristi c 
is unchange d b y thi s operation . (Se e Figur e 4.19b. ) W e als o ad d 
each verte x i n th e secon d triangulatio n T 2 t o T 3, togethe r wit h on e 
edge tha t run s fro m tha t verte x t o on e o f th e vertice s tha t i s alread y 
in T 3, a s i n Figur e 4.19c . W e choos e eac h o f thes e ne w edge s t o b e a 
subset o f on e o f th e edge s fro m T 2. Not e als o tha t th e additio n o f 
each ne w verte x an d edg e doesn' t chang e th e Eule r characteristic , sinc e 
the numbe r o f face s (admittedly , funny-lookin g faces ) hasn' t changed , 
while th e numbe r o f vertice s an d th e numbe r o f edge s ha s eac h gon e 
up b y one . Sometimes we wil l need t o add a  chain o f edge s t o connec t a 
vertex o f T 2 and T 3; however, the Euler characteristi c remains unchanged . 

Figure 4.19 (a ) Tv (b ) Add vertices, (c) Add pairs of vertices and edges . 

Now w e ad d al l o f th e piece s o f edge s fro m T 2 tha t hav e no t bee n 
added yet , eac h o f whic h become s a  separat e edg e i n T 3. Not e tha t 
as w e ad d on e o f thes e edges , a s i n Figur e 4.20a , w e cu t a  fac e i n two . 
Hence, th e numbe r o f edge s an d th e numbe r o f face s eac h goe s u p b y 
one, leavin g th e Eule r characteristi c unchanged . W e now hav e a  pictur e 
as i n Figur e 4.20b . O f course , a t thi s point , a s i s th e cas e wit h ou r pic -
ture, we may not have a triangulation. Some of the faces may not be trian-
gles. S o no w w e jus t ad d edge s t o cu t th e face s int o triangles , a s i n 
Figure 4.20c. When we add suc h an edge , it cuts an existing face into tw o 
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pieces, so both th e number o f edge s and th e number o f face s goe s up b y 
one, agai n leavin g th e Eule r characteristi c unchanged . Thus , w e hav e 
shown tha t ther e exist s a  thir d triangulation , T 3, wit h th e sam e Eule r 
characteristic a s T\,  such tha t i t "contains " both T j and T 2. Since we coul d 
have buil t i t by startin g wit h T 2, it als o ha s th e sam e Eule r characteristi c 
as T 2. Hence , w e hav e show n tha t T\  an d T 2 must hav e th e sam e Eule r 
characteristic. 

Figure 420 (a ) Adding on e more edge , (b ) Adding th e res t o f T 2. (c) Tri-
angulating the result. 

Exercise 4.7  Fin d tw o triangulation s o f th e sphere . Overla p the m an d 
find a  thir d triangulatio n tha t "contains " bot h o f them . Chec k tha t 
they all yield the same Euler characteristic. 

Great, s o Eule r characteristi c onl y depend s o n th e typ e o f surfac e 
that we have, and not on the particular triangulation. Any triangulation of 
the spher e ha s Eule r characteristi c 2 , and an y triangulatio n o f th e toru s 
has Eule r characteristi c 0 . Bu t wha t abou t th e Eule r characteristi c o f a 
genus 2 surface? We could just take a triangulation o f the surface and the n 
compute it s Eule r characteristic . Bu t instead , let' s b e a  littl e bi t mor e 
clever. One way to obtain a  genus 2 surface i s to remove a disk from eac h 
of tw o tor i an d the n t o glu e th e tor i togethe r alon g th e resultin g circl e 
boundaries (Figur e 4.21) . Thi s i s calle d takin g th e connecte d su m o f 
the tori. 

Figure 421 Th e connected sum of two tori is a genus 2 surface. 
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Suppose tha t we already hav e triangulations o f the two tori . Then w e 
can thin k o f taking thei r connecte d su m a s removing th e interior o f a  tri -
angle from eac h torus and then gluing together th e boundaries o f the tw o 
missing triangle s by pairin g u p th e vertices an d edge s (Figur e 4.22) . The 
result i s a triangulate d genu s 2  surface. Sinc e we have a  triangulation fo r 
it, we can figure out what the Euler characteristic will be. 

Figure 4.22 Th e connected sum of two triangulated tori . 

The tota l numbe r o f vertices , edges , and face s i n the triangulatio n o f 
S is just th e tota l number o f vertices , edges, and face s i n T x an d T 2, with 
three fewe r vertices , sinc e w e identifie d thre e vertice s i n Ti  wit h thre e 
vertices i n T 2, thre e fewe r edges , sinc e w e identifie d thre e edge s i n T j 
with thre e edge s i n T 2, an d tw o fewe r faces , sinc e w e thre w awa y th e 
interiors o f tw o triangle s i n orde r t o construc t th e connecte d sum . Bu t 
since V  i s added int o th e formul a an d £  i s subtracted fro m th e formula , 
the los s o f thre e vertice s an d thre e edge s ha s n o ne t effec t o n th e Eule r 
characteristic. Henc e th e onl y effec t i s th e los s o f tw o faces . Therefor e 
we obtain 

X(S) = XOi ) +  X(T 2) -  2 

Since w e kno w tha t th e Eule r characteristi c o f a  toru s i s 0 , thi s say s 
X(S) = - 2 . 

Exercise 4.8  Us e connected sum s to show tha t th e Euler characteristi c of 
a genus 3 surface is —4. 

Exercise 4.9  Us e induction t o show tha t the Euler characteristi c o f a  sur -
face of genus g is 2 - 2g. 

Let's make th e computation o f Euler characteristi c eve n easier . We no 
longer insis t that the faces be triangles. Instead, we can subdivide the sur -
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face int o vertices , edges, and faces , wher e a  face i s simply a  disk wit h it s 
boundary mad e u p o f a  sequence o f edges connecting th e vertices (bette r 
known a s a  polygon) . Our onl y restrictio n o n a  face i s tha t i t be a  singl e 
piece tha t ha s n o hole s i n it . Fo r example , w e coul d subdivid e th e toru s 
into a  single face, with on e vertex and tw o edges , obtaining X  = 0 . Or w e 
could cu t the genus 2 surface up into 4 faces, with 6 vertices and 1 2 edges, 
yielding the expected X = - 2 (Figur e 4.23). 

Figure 4.23 Subdividin g the torus and genus 2 surface. 

Exercise 4.10  Us e Euler characteristi c t o determine th e genu s o f th e sur -
face in Figure 4.24. 

Figure 4.24 Wha t is the genus of this surface ? 

One question remains : How d o w e know tha t ever y surfac e ha s a  tri -
angulation? Thi s turn s ou t t o be a  har d technica l fac t tha t wa s prove d i n 
the 1930s . However, even though ever y surface doe s have a triangulation , 
not every surface has one with a finite number o f triangles. 

We say tha t a  surface i s compact i f i t has a  triangulation wit h a  finit e 
number o f triangles . S o th e spher e an d toru s ar e certainl y compac t sur -
faces. Bu t neither th e plane nor a  torus minus a  disk (Figur e 4.25) is com-
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pact, a s neithe r ca n b e triangulate d wit h finitely  man y triangles . I n th e 
case of the plane, this is obvious. In the case of the torus minus a disk, we 
would hav e t o us e infinitel y man y triangles , getting smalle r an d smalle r 
as w e approache d th e boundar y o f th e missin g disk . Not e tha t bot h th e 
plane and the torus minus a disk do satisfy th e definition o f a surface . 

^ . . • ^ i ^ , , ^ ^ 

Figure 425 A  plan e and a torus minus a disk. 

We are primarily interested in compact surfaces . They have the advan -
tage that we can compute their Euler characteristic . 

Where d o surface s appea r i n kno t theory ? I n th e spac e aroun d th e 
knot. Le t R 3 b e th e three-dimensiona l spac e tha t th e kno t K  sit s in . Th e 
space around th e knot i s everything bu t th e knot , which w e denot e M = 
R3 -  K.  We call M the complement of the knot. It is what is left over if we 
drill the knot out of space (Figure 4.26). All of the surfaces tha t we look at 
live in the complement of the knot. 

Figure 426 Th e complement of the knot is everything but  the knot . 

Figure 4.27 shows an example of a surface i n the complement o f a link 
when th e link i s splittable . Since we ca n pul l th e component s o f th e lin k 
apart, we can think of there being a sphere that separates the component s 
from on e another . I n fact , a n alternativ e wa y t o defin e a  splittable lin k i s 
simply to say that it is a link such that there is a sphere in the link comple-
ment that has components of the link on either side of it. 
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Figure 427 A  spher e in the complement of a splittable link. 

Note that every knot is contained in a torus like the one in Figure 4.28. 
But Figure 4.29 contains a  torus tha t surround s a  knot i n a  more unusua l 
way. W e wil l se e mor e example s o f thi s i n Sectio n 5. 2 whe n w e discus s 
satellite knots . And Figur e 4.30 is an exampl e o f a  genus 2  surface i n th e 
complement of a knot. 

Figure 428 Ever y knot is contained in a torus. 

Figure 429 A  torus surrounding a  knot. 

Figure 430 A  genus 2 surface around a  knot. 
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We ar e particularl y intereste d i n surface s i n kno t an d lin k comple -
ments that canno t be simplified. I n particular, let L be a link in R3 and let F 
be a  surface i n th e complemen t R 3 -  L . We say tha t F  is compressible i f 
there is a disk D in R3 -  L  such that D  intersects F exactly in its boundary 
and its boundary doe s not bound anothe r dis k on F. Note that D is not al -
lowed to intersect L. 

For instance, the surface F in Figure 4.31 is compressible since the disk 
D is a disk in R3 that does not intersect the link L, intersects F exactly in its 
boundary, an d it s boundary doe s no t bound a  disk o n F . A compressibl e 
surface ca n b e simplified , b y cuttin g i t ope n alon g th e boundar y o f th e 
disk and the n gluin g tw o copies of the disk t o the two curves that result . 
We obtain a  simpler surface (o r sometimes a  pair o f surfaces) tha t stil l lies 
in th e lin k complement . Thi s simplifyin g operatio n i s calle d a  compres -
sion of the original surface . 

Exercise 4.11  Sho w tha t a  compression alway s increases Euler character -
istic. Use thi s t o sho w tha t th e genu s o f th e resultin g surfac e o r sur -
faces is always less than the genus of the original surface . 

If a  surface i s not compressible , we sa y tha t i t i s incompressible . Fo r 
instance, the torus in Figure 4.32 is incompressible, although provin g i t i s 
somewhat difficult . Bu t notice that any dis k tha t intersect s the torus in it s 
boundary looks like it either must intersect the link L or its boundary mus t 
cut a disk off of the torus. 

Figure 432 Thi s torus is incompressible since no compressing disks exist . 
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An incompressible torus like the one in Figure 4.32 exists any time that 
we hav e a  composit e knot . I t i s called a  swallow-follow toru s because i t 
swallows on e o f th e tw o facto r knot s an d follow s th e othe r one . Surpris -
ingly, the genus 2 surface in Figure 4.30 is compressible. 

Exercise 4.12*  Fin d a  disk i n Figure 4.30 that demonstrate s tha t th e sur -
face in the figure i s compressible. If we simplify th e surface usin g thi s 
disk, what surface do we get? 

All o f th e surface s w e hav e looke d a t s o fa r ar e surface s tha t d o no t 
have boundaries. We now want to look at surfaces with boundaries . 

4.2 Surface s with Boundary 

In order t o obtain surfaces wit h boundary, we can just remove the interi -
ors of disks from th e surfaces tha t we already have (Figure 4.33). We leave 
the boundaries o f th e disks in the surfaces . Thes e become th e boundarie s 
of th e surfaces . Al l o f th e resultin g boundarie s ar e circles , which w e wil l 
call boundary components . Sinc e al l o f ou r surface s ar e mad e o f rubber , 
they ca n loo k ver y differen t whe n w e defor m them . Fo r instance , Figur e 
4.34 show s tw o differen t picture s o f a  toru s wit h on e boundar y compo -
nent and the deformation fo r getting from the one picture to the other . 

Figure 433 Surface s with boundary . 

Figure 434 Picture s of a torus with one boundary. 
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How doe s th e Eule r characteristi c appl y t o surface s wit h boundary ? 
When we remove a disk from a  surface without boundary, we can think of 
it as removing the interior of one triangle in a triangulation o f the surface . 
Hence th e Eule r characteristi c goe s dow n b y one . Thus , a  surfac e wit h 
three boundary component s ha s an Euler characteristi c three less than th e 
Euler characteristi c o f th e surfac e obtaine d b y fillin g i n th e thre e bound -
aries wit h disks . Fillin g i n boundar y component s b y attachin g disk s i s 
called capping off a  surface with boundary . 

Exercise 4.  IS Fin d th e Eule r characteristic s o f eac h o f th e surface s i n 
Figure 4.35 without triangulating them . 

Figure 435 Fin d the Euler characteristics of these surfaces . 

Unlike surface s withou t boundar y i n three-space , surface s wit h 
boundary canno t al l be distinguished by Euler characteristic. For instance, 
Figure 4.36 contains two surfaces wit h boundary tha t have the same Eule r 
characteristic, bu t tha t ar e no t homeomorphic . I t migh t hel p t o pictur e 
these surfaces by thinking of thei r boundaries a s wire frames an d th e sur -
faces as soap films spanning the wires. 

Figure 4.36 Bot h surfaces have the same Euler characteristic . 

We can calculat e Eule r characteristi c fo r surface s wit h boundar y jus t 
as we did fo r surface s withou t boundary , by adding vertices and edge s t o 
cut the surface into a finite se t of faces. Note that when we add vertice s to 
the boundary o f the surface, the resulting pieces of the boundary coun t a s 
edges in our calculation of Euler characteristic . 
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Exercise 4. 14 Verif y tha t th e tw o surface s wit h boundar y i n Figur e 4.36 
have the same Euler characteristic . 

We can actually construc t thes e surfaces ou t o f paper . For instance, in 
order t o construct th e firs t surfac e i n Figure 4.36, cut ou t tw o large r disk s 
and three thin strips of paper. At one end of each of the disks, tape two of 
the strips running fro m on e disk t o the other , each with a  half twis t i n it , 
then tape the last strip from th e one disk to the other with a full twis t in it, 
making sur e tha t th e directio n o f th e twis t matche s th e directio n o f th e 
twist in Figure 4.36 (see Figure 4.37). 

On 
O 

Figure 4,37 Constructin g a paper surface . 

There mus t b e som e trai t othe r tha n Eule r characteristi c tha t distin -
guishes between these two surfaces. Suppose we start painting one side of 
the first  surface gra y I f we continue t o paint tha t side , eventually we wil l 
end u p paintin g th e entir e surfac e gra y o n bot h side s (Figur e 4.38a) . I n 
essence, the surface doesn' t hav e tw o distinc t sides . Rather, the two side s 
are connected. On the other hand, we could paint the two sides of the sec-
ond surfac e blac k an d white , and nowher e woul d an y blac k pain t touc h 
any whit e pain t (Figur e 4.38b) . There reall y ar e tw o distinc t side s o f th e 
surface. 

Figure 4,38 (a ) One side, (b) Two sides. 
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We sa y tha t th e secon d surfac e i s orientable . A  surfac e sittin g i n 
three-dimensional spac e i s orientabl e i f i t ha s tw o side s tha t ca n b e 
painted differen t colors , say black and white , so that the black paint neve r 
meets th e whit e pain t excep t alon g th e boundar y o f th e surface . So , fo r 
example, a  toru s i s a n orientabl e surface , becaus e w e coul d alway s 
paint th e oute r sid e blac k an d th e inne r sid e white . Also , a  dis k an d a 
torus wit h on e boundar y componen t ar e bot h orientabl e (Figur e 4.39) . 
In fact , an y o f th e surface s i n Figure s 4.1 5 an d 4.1 6 wit h an y numbe r 
of disk s remove d t o creat e boundar y component s wil l b e orientabl e 
(Figure 4.40). 

t>  I I P 
a b 

Figure 439 A  dis k (a ) and a  torus with boundary (b ) are both orientable . 

Figure 4.40 Thes e surfaces are all orientable. 

So what's anothe r exampl e o f a  surface tha t i s not orientable ? On e of 
the simples t suc h surfaces i s the Mobius ban d (Figur e 4.41). This surfac e 
is no t orientabl e becaus e i f w e starte d paintin g on e sid e o f i t blac k an d 
continued workin g on that side , we would fin d tha t when we were done , 
we had painte d al l of i t black. Because of the twis t in the Mobius band, i t 
only has one side. We call such a  surface nonorientable . (Wh y do we us e 
the word "nonorientable'"'" ? Prin t the letter S  on a  Mobius band s o that th e 
ink bleed s throug h t o th e othe r side . Now slid e th e lette r S  once aroun d 
the Mobius band. We will now see 2. The orientation of the letter has been 
reversed.) 
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Figure 4.41 A  Mobiu s band. 

Figure 4.4 2 show s a  strange r nonorientabl e surface . I t als o ha s onl y 
one side. In fact, a  surface i s nonorientable i f and onl y if it contains a  Mo-
bius band withi n it . (The Mobius band ma y have an odd numbe r o f half -
twists i n i t rathe r tha n jus t on e half-twist , sinc e i t woul d b e homeomor -
phic t o th e usua l Mobiu s band. ) I n Figur e 4.42 , we hav e shade d suc h a 
Mobius band. 

Figure 4.42 A  Klei n bottle with one boundary component . 

Exercise 4.15  Decid e whic h o f th e tw o surface s i n Figur e 4.4 3 i s ori -
entable and which is nonorientable. 

Figure 4.43 On e surface is orientable, and one is not. 
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Now suppos e tha t w e hav e a  mess y surfac e wit h boundary , sa y th e 
one in Figure 4.44, and w e want t o figure ou t what surfac e i t is. To do so, 
we need to know three facts. 

1. I s it orientable or nonorientable ? 

2. Ho w many boundary components does it have? 

3. Wha t is its Euler characteristic ? 

These thre e piece s o f informatio n wil l completel y determin e th e homeo -
morphic type of the surface. [Se e (Massey, 1967) for a proof.] 

Figure 4.44 Wha t surface is this? 

In the case of Figure 4.44, the surface i s orientable, it has three bound -
ary components , an d w e ca n subdivid e it , a s i n Figur e 4.45 , in orde r t o 
determine tha t it s Eule r characteristi c i s - 3 . Therefore , i f w e ca p of f 
its boundar y component s wit h thre e disks , th e resultin g surfac e 
without boundar y wil l hav e X  =  0 . S o th e resultin g surfac e withou t 
boundary i s a  torus . Hence , ou r surfac e i s simpl y a  toru s wit h thre e 
disks removed . 

Figure 4.45 A  subdivision . 

Exercise 4.16  Us e th e thre e criteri a t o identif y th e surface s wit h bound -
ary in Figure 4.46. 
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Figure 4.46 Identif y thes e surfaces with boundary . 

If a  surface ha s boundary, we defin e it s genus t o be th e genus o f th e 
corresponding surfac e withou t boundar y obtaine d b y cappin g of f eac h of 
its boundary component s with a  disk. Thus, the genus of the surface wit h 
boundary shown in Figure 4.44 must be 1. 

We would no w lik e t o appl y surface s wit h boundar y t o kno t theory . 
As a first  example, let's look at the unknot. One way to define th e unkno t 
is to say that i t is the only knot tha t forms th e boundary o f a  disk (Figur e 
4.47). In some projections o f the unknot, the disk i s not a t al l obvious, but 
it is always there. 

o 
Figure 4.47 Th e unknot always bounds a disk. 

Another exampl e o f a  surfac e wit h boundar y i n kno t theor y come s 
from composit e knots . A s i n Figur e 4.48 , i f w e hav e a  composit e knot , 
there i s a  spher e wit h tw o boundar y component s tha t lie s outsid e th e 
knot. Thi s surfac e i s also calle d a n annulus . Not e tha t w e thickene d th e 
knot up a  little in this picture. Otherwise, if we had lef t th e knot infinitel y 
thin, w e woul d hav e sai d th e surfac e wa s a  spher e wit h tw o punctures , 
the punctures occurrin g where the knot passed throug h th e sphere. Thus, 
an alternative definitio n o f a  composite kno t i s a knot suc h tha t ther e is a 
sphere in space punctured twic e by the knot such that the knot is nontriv-
ial both inside and outside the sphere. 

Figure 4.48 A n annulus outside a composite knot . 
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Another plac e that surface s snuc k by was when w e discussed tangle s 
in Sectio n 2.3 . There w e though t o f a  tangle a s a  regio n i n th e projectio n 
plane wit h fou r outgoin g strands . We can als o thin k o f i t a s a  portio n o f 
the kno t surrounde d b y a  spher e wit h fou r punctures , th e puncture s oc -
curring wher e the knot passe s through th e sphere . Such a  sphere i s aptl y 
called a  Conway sphere (Figure 4.49). If we thicken up the knot, the punc-
tures becom e hole s an d w e hav e a  spher e wit h fou r boundar y compo -
nents. 

Figure 4.49 A  Conway sphere . 

A third example of a surface in knot theory appears in Figure 4.50. We 
see a Mobius band wit h boundary th e trefoi l knot . Even though th e ban d 
has three twists instead of one, it is still a Mobius band. (This band and th e 
Mobius band are homeomorphic since we can cut this band open along an 
arc, untwis t on e ful l twist , an d the n reidentif y th e point s w e first  cu t 
along, obtaining the Mobius band.) 

Figure 4.50 A  Mobius band with boundary the trefoil knot . 

We wil l b e particularl y intereste d i n orientabl e surface s wit h on e 
boundary component such that the boundary component is a knot. For ex-
ample, here i s a  toru s wit h on e boundary componen t wher e tha t bound -
ary componen t i s a trefoi l kno t (Figur e 4.51). Admittedly, th e surface pic -
tured doesn' t look much like a torus with one boundary, but a s we saw in 
Figure 4.34, these surfaces can look kind of strange. 
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OD 
Figure 4.51 A  toru s with on e boundary component , tha t boundary com -
ponent being a trefoil knot . 

Exercise 4.17  Us e Euler characteristi c t o show tha t th e surfac e i n Figur e 
4.51 is indeed a torus with one boundary component . 

4.3 Genu s and Seifert Surfaces 

We hav e see n tha t surface s appea r i n kno t theor y i n man y ways . Par -
ticular type s o f knot s hav e particula r type s o f surface s i n thei r comple -
ments. However , surprisingl y enough , ther e i s on e typ e o f surfac e 
that appear s i n th e complemen t o f an y knot . I n 1934 , th e Germa n 
mathematician Herber t Seifer t cam e u p wit h a n algorith m s o that , give n 
any knot, one can create an orientable surface wit h one boundary compo -
nent such that the boundary circle is that knot. This is pretty amazing. On 
first thought , it' s hard t o imagine ho w t o ge t an y orientabl e surfac e wit h 
one boundary component such that the boundary component is knotted a t 
all. We are supposed t o take a surface like a torus with one boundary com -
ponent an d embe d i t in space so that th e boundary circl e is knotted (Fig -
ure 4.52)? But we di d se e one example i n the previous section . There , w e 
saw a  torus with on e boundary componen t wher e tha t boundary compo -
nent was knotted into a trefoil knot . 

Figure 4.52 Embe d this in space so that the boundary circle is knotted? 
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Seifert's algorith m tell s u s tha t no t onl y ca n w e embe d surface s i n 
space wit h a  knotte d boundar y componen t bu t w e ca n d o s o t o ge t any 
knot whatsoever . Suppos e w e wan t t o construc t suc h a  surfac e fo r a 
particular kno t K.  Starting with a  projection o f the knot , choose an orien -
tation o n K.  A t eac h crossin g o f th e projection , tw o strand s com e i n 
and tw o strand s g o out . Eliminat e th e crossin g b y connectin g eac h o f 
the strand s comin g int o th e crossin g t o th e adjacen t stran d leavin g 
the crossin g (Figur e 4.53) . No w al l o f th e resultan t strand s wil l n o 
longer cross . Th e resul t wil l b e a  se t o f circle s i n th e plane . (The y ar e 
not roun d circle s i n th e usua l sense , bu t rather , the y ca n b e deforme d 
to roun d circles . So , t o u s topologists , the y ar e circles. ) Thes e circle s 
are calle d Seifer t circles . Eac h circl e wil l boun d a  dis k i n th e plane . 
Since w e d o no t wan t th e disk s t o intersec t on e another , w e wil l choos e 
them t o b e a t differen t height s rathe r tha n havin g the m al l i n th e 
same plane (Figure 4.54). 

Figure 4.53 Eliminat e all crossings. 

cp <3b 
Figure 4.54 Th e circles bound disks at different heights . 

Side view 

Now w e woul d lik e to connec t th e disk s t o on e anothe r a t th e cross -
ings of the knot by twisted bands (Figure 4.55). The result is a surface wit h 
one boundar y componen t such  that  the  boundary  component  is  the  knot. 
Pretty amazing! Let's try that again. (See Figure 4.56.) 
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Figure 4.55 Connec t the disks by twisted bands. 

Side view 

Figure 4.56 Thi s surface has boundary the 63 knot. 

Exercise 4.18  Sho w that the surface that we get doesn't depend o n the di-
rection we choose on the knot. 

In fact , th e surface s tha t w e ar e generatin g ar e alway s orientable . To 
see this , we need t o show tha t eac h surfac e ha s two distinc t sides , whic h 
can be painted tw o different colors . Let's give each Seifert circl e the orien -
tation tha t i t inherits from th e knot , either clockwise or counterclockwise . 
For each dis k tha t has a  clockwise orientation o n it s bounding Seifer t cir -
cle, we pain t it s upward pointin g fac e whit e an d it s downward pointin g 
face black . Fo r eac h dis k tha t ha s a  counterclockwis e orientatio n o n it s 
bounding Seifer t circle , we pain t it s upwar d pointin g fac e blac k an d it s 
downward pointin g face white. 

At each crossing in the knot, we connect two of the disks bounded b y 
the Seifert circle s by a band containing a  half-twist. I f one of the two disk s 
is adjacent t o the other , the two disk s have opposit e orientations o n thei r 
boundaries. Hence, the twist in the band allows us to extend the black an d 
white paint across the two faces o f the band s o that they match up consis -
tently o n th e disks . If one of the tw o disk s i s on top o f th e other , the tw o 
disks hav e th e sam e orientatio n o n thei r boundaries . Again , th e twis t i n 
the band allow s us to extend th e paint consistentl y across the band. Thus , 
the entir e surfac e ca n b e painte d blac k an d whit e s o tha t n o blac k pain t 
touches an y whit e paint , an d therefor e th e surfac e i s orientabl e (Figur e 
4.57). 

Si 
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Figure 4.57 Th e surface has two sides that can be painted differen t colors . 

Exercise 4.19  Not e that if we add a n edge and two vertices to the surfac e 
across each crossing, cutting eac h band i n half, we cu t the surfac e u p 
into valid faces . Use this fac t t o show tha t i f c  is the number o f cross -
ings an d s  i s th e numbe r o f Seifer t circles , the n X  =  s  -  c  and th e 
genus of the surface is g =  (c - s  + l ) /2 . 

Exercise 4.20  Us e Seifert's algorithm to find surface s boimding the knots 
in Figure 4.58. Use Euler characteristic to identify th e surfaces . 

® m^ 
Figure 4.58 Wha t are the surfaces ? 

Exercise 4.21  Sho w that Seifert's algorithm always generates at least two 
Seifert circles . 

Notice that Seifert's algorith m can be used to generate lots of differen t 
surfaces fo r th e sam e kno t (Figur e 4.59) . We could alte r th e projection o f 
the knot and then obtain a surface that at least looks different . 

Figure 4.59 Othe r Seifert surfaces for the same knot . 
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Given a  kno t K,  a  Seifer t surfac e fo r K  i s a n orientabl e surfac e wit h 
one boundary componen t suc h tha t th e boundary componen t o f th e sur -
face is the knot K.  We have just described on e way to obtain a Seifert sur -
face for a  knot. However, there may be other Seifer t surface s fo r th e sam e 
knot. 

We define th e genus of a  knot to be the least genus of any Seifer t sur -
face fo r tha t knot . For example , the unkno t bound s a  disk. When w e ca p 
off th e disk, we get a sphere, which has genus 0; therefore th e unknot ha s 
genus 0  (Figure 4.60). Note that the unknot i s the only knot with genu s 0 . 

Figure 4.60 Th e unknot has genus 0. 

What abou t th e figure-eigh t knot ? By Seifert's algorithm , w e obtai n a 
Seifert surfac e wit h genu s 1 . Since th e figure-eigh t kno t i s no t trivial , i t 
cannot bound a  surface o f genus 0 , so 1 is the least genus o f a  Seifert sur -
face for the figure-eight knot . Thus, the genus of the figure-eight kno t is 1. 

Exercise 4.22  Th e twis t knot s ar e the knot s show n i n Figur e 4.61 . They 
include th e trefoi l an d figure-eigh t knots . Sho w tha t al l o f th e twis t 
knots have genus 1. 

CD qp - & -
Figure 4.61 Sho w that all the twist knots have genus 1. 

The definitio n fo r a n incompressibl e surfac e fro m Sectio n 4. 1 applie s 
without change to surfaces with boundar y 

^EE ? Cap off 
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Exercise 4.23  Sho w tha t a  minima l genu s Seifer t surfac e fo r a  kno t K 
must be incompressible. (Consider Euler characteristic. ) 

Is it true that Seifert's algorithm wil l always yield the Seifert surface of 
minimal genus? That' s a  little too much t o hope for . We could tak e a very 
nasty projectio n o f a  kno t an d w e couldn' t expec t t o ge t th e minima l 
genus Seifer t surfac e b y applyin g Seifert' s algorith m t o thi s knot . How -
ever, in the case of alternating knots, we can use Seifert's algorithm to fin d 
the minimal genus. 

Theorem Applyin g Seifert' s algorith m t o an alternatin g projectio n o f a n 
alternating knot or link does yield a Seifert surface of minimal genus. 

There ar e severa l proof s o f this , the easies t o f whic h i s due t o Davi d 
Gabai (see Gabai, 1986), a professor a t Caltech. According to the theorem , 
it is easy to calculate the genus of an alternating knot or link. 

Exercise 4.24  Calculat e the genus of the knots 63 and 76. 

Let's loo k a t wha t effec t compositio n ha s o n genus . Le t g(K)  be th e 
genus of a knot K. 

Theorem g(J#K)  = g(J) + g(K). 

So i f w e kno w th e genu s fo r eac h o f tw o knots , w e ca n simpl y ad d 
them togethe r t o ge t th e genu s o f th e compositio n o f th e knots . Let' s g o 
through th e proof o f this , as i t utilizes techniques tha t occu r ofte n i n kno t 
theory. 

Proof. It' s easy to see that g(J#K) <  g(J)  + g(K).  We can just take a 
Seifert surface Q  of genus g(J) for / and a  Seifert surface R  of genu s 
g(K) for K, remove a little piece of each along their boundaries, and 
sew them together to obtain a Seifert surface of genus g(J) + g(K)  for 
J#K (Figure 4.62). However, it is conceivable that J#K has a Seifert sur -
face with smaller genus than this. We will show that in fact it does not. 

Figure 4.62 g(J#K)  < g(J)  + g(K). 
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Let S be a Seifert surface of minimal genus for J#K. Since J#K is a 
composite knot, there is a twice-punctured spher e F that separates the 
J part of the knot from th e K part of the knot. This twice-puncture d 
sphere will intersect the Seifert surface S  (Figure 4.63). We deform th e 
surfaces through space (perform a n isotopy in math lingo) in order to 
rearrange the way the two surfaces intersect . When S  just touches F at 
a point, we can move S slightly to eliminate the intersection (Figur e 
4.64). We can also move S slightly so that the intersection consist s 
entirely of loops and/or arcs (Figure 4.65). 

Figure 4.63 S  and F. 

(D 
Figure 4.64 Remov e single point intersections . 

Figure 4.65 Al l intersection curves are either circles or arcs. 

Although we can imagine much nastier situations, where our 
intersection set was even worse (say the two surfaces intersec t in a 
disk or in an infinite number of discrete points), all of these situations 
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can be remedied by a slight deformation o f S, resulting in an 
intersection set containing only arcs and loops. This slight movemen t 
of S to simplify th e intersection is called putting the surfaces i n 
general position. There is an entire theory of mathematics that says 
that it can be done, but we won't get into that. Intuitively, it sounds 
reasonable, and we will go with that feeling . 

There is an arc of intersection between F and S  that begins and 
ends at the punctures of F. Since we can assume that the boundary of 
S intersects the punctures of F exactly twice, there can be only one arc 
of intersection between F and S  (Figure 4.66). All other intersectio n 
curves between S and F are loops. We eliminate each of the loops of 
intersection one by one until none remain. Notice that there are three 
places where we can think of these intersection curves as lying (Figur e 
4.67). We can think of them as curves in the knot complement, floatin g 
around in three-space. We can also think of them as curves lying on 
the Seifert surface S.  There, we have a set of intersection loops lying 
on S and one intersection arc that begins and ends on the one 
boundary component of S. We can also think of the intersection curves 
as lying on the twice-punctured spher e F. The one intersection arc 
begins at one of the punctures on F and ends at the other puncture . 

Part of F 

Figure 4.66 Ther e is only one arc of intersection . 

Figure 4.67 Thre e ways to think about intersection curves . 
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Given a particular intersection loop on F, it must either separat e 
the two punctures from one another on F or it must have both of the 
punctures on the same side of it on F. However, since the single 
intersection arc connects the one puncture to the other on the surfac e 
of F and since that arc cannot intersect the loop, it must be that both of 
the punctures are on the same side of the loop on F. The other side of 
the loop must then be an unpunctured disk . Therefore, every 
intersection loop on F bounds an unpunctured dis k on F (Figure 4.68). 

Figure 4.68 Ever y intersection loop bounds an unpunctured dis k on F. 

There must be an intersection loop that is innermost on F, that is to 
say, it bounds a disk on F containing no other intersection curves. We 
call this curve C. Cut S  open along C, obtaining two copies of C in the 
cut open S. Glue disks to each of the new curves, where each disk is 
parallel to the disk bounded by C in F (Figure 4.69). Now, F and th e 
new S  do not intersect along C at all. This new S may or may not be 
connected. If it is not connected, throw away the piece of S that does 
not touch the knot. The resulting S is still a Seifert surface for J#K, but 
it intersects F in one less intersection circle. 

Figure 4.69 Formin g a new S. 

Exercise 4.25  Sho w that the "surgery" we just did to S could not have in-
creased it s genu s (b y lookin g a t ho w th e surger y change s th e Eule r 
characteristic of S). 
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Exercise 4.26  Sho w that the fact that S  is a minimal genus Seifert surfac e 
implies that after cuttin g and the n pasting in the two disks, the surfac e 
has two pieces, and the piece that we throw away is a sphere. 

We repeat this surgery operation until S and F do not have any 
intersection circles left. Since S is still a Seifert surface for J#K and 
since the surgeries did not increase genus, S must stil l be a minimal 
genus Seifert surface for /#K. There is now only one intersection arc 
between F and S . Thus, F divides S into a Seifert surface for / and a 
Seifert surface for K  (Figure 4.70). 

Figure 4.70 F  divides S  int o a  Seifer t surfac e fo r /  an d a  Seifer t surfac e 
forK. 

The sum of the genera of these two Seifert surfaces must then be 
the genus of S. Therefore g(J) + g(K)  < g(J#K),  since the genera of 
/ and K are each less than or equal to the genera of these two Seifer t 
surfaces. As we have already seen the reverse inequality, we have that 

g(J) + g(K) = g(J#K ) 

as we set out to prove. 

Isotoping surface s t o clea n u p th e intersections , an d the n performin g 
surgeries to lower the number o f intersection curves between th e surface s 
until non e o r one curve remains i s a procedure tha t i s relatively commo n 
in knot theor y an d i n the more genera l field  o f topology . We can use thi s 
theorem to prove a fact we stated way back in Section 1.2 , namely, that the 
trivial knot  cannot  be  the composition  of two  nontrivial  knots  (Figur e 4.71) . 
Why not ? An y nontrivia l kno t ha s genu s a t leas t 1  (genu s 0  mean s th e 
knot bound s a  dis k an d i s therefor e trivial) . S o th e compositio n o f tw o 
nontrivial knot s ha s genu s a t leas t 2  an d therefor e canno t b e th e trivia l 
knot. 
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Figure 4.71  Th e trivia l kno t i s no t th e compositio n o f tw o nontrivia l 
knots. 

That was satisfying. I t really makes you appreciate surfaces . 

Exercise 4.27  Sho w that genus number 1  knots are prime. 

Exercise 4.28  Prov e tha t i f w e tak e th e compositio n o f n  copie s o f th e 
same nontrivial knot , calling the result Jn, then as n approaches ©o , the 
crossing number o f /„ approaches <*> . (Hint:  Use the fac t tha t ther e ar e 
only a  finite numbe r o f knot s with a  given crossing number [bu t firs t 
use the Dowker notation to prove this fact]. ) 

Exercise 4.29  Let' s se e i f w e ca n improv e o n th e resul t fro m th e las t 
exercise. Prov e tha t i f J n i s th e compositio n o f n  copie s o f th e sam e 
nontrivial knot , then the crossing number o f Jn is at least n.  (Hint:  Use 
the Eule r characteristi c o f a  Seifer t surfac e an d Exercise s 4.1 9 an d 
4.21.) [Trove the crossing number of/„ i s at least 2n + 1. ] 

Let's talk a little more about this fact that Seifert's algorithm, when ap-
plied t o a n alternatin g projection , yield s a  minimal genu s Seifer t surface . 
We might wonder i f this is true for any other types of knots. In fact, Loui s 
Kauffman fro m th e University o f Illinoi s at Chicago extended th e class of 
alternating link s to the class of "alternativ e links " [see (Kauffman, 1983)] . 
He showe d tha t th e genus o f any lin k in this larger clas s is also given b y 
Seifert's algorithm . Th e clas s o f alternativ e link s include s al l alternatin g 
links and all torus links, the topic of Section 5.1. 

At th e ver y least , we migh t hop e tha t th e minima l genu s Seifer t sur -
face can be obtained by applying Seifert' s algorith m to some projection of 
the knot . Bu t surprisingl y enough , a n Israel i mathematician name d Yoa v 
Moriah prove d tha t ther e ar e i n fac t knot s fo r whic h th e minima l genu s 
Seifert surfac e canno t be obtaine d b y applyin g Seifert' s algorith m t o an y 
projection o f the knot. (Moriah, 1987). He creates a sequence of knots suc h 
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that the difference between the actual genus and the genus of a surface ob-
tained from Seifert' s algorithm is arbitrarily large. 

In fact , on e ca n defin e th e canonica l genu s g c(K) o f a  kno t t o b e th e 
minimal genu s o f any Seifer t surfac e obtaine d b y applyin g Seifert' s algo -
rithm t o a  projectio n o f th e knot . I n 1996 , two Japanes e mathematicians , 
M. Kobayashi and T . Kobayashi found a n infinite famil y o f knots with ar -
bitrarily high genus such that gc(K) = 2g(K). 

c& (Unsolved Questions 
1. Determin e exactly which knots have a  projection suc h that Seifert' s 
algorithm applie d t o tha t projectio n yield s a  minima l genu s Seifer t 
surface. Perhap s Moriah' s examples ar e a  very smal l subse t o f the se t 
of all knots. 

2. Ca n one find infinit e classes of knots with gc(K) = ng(K) for any pos-
itive integer n? 

We mentioned i n Section 2.3 that mutan t knot s ar e difficul t t o distin -
guish. I n particular , th e Kinoshita-Terasak a mutant s o f Figur e 2.3 2 
stumped kno t theorists for awhile . Francis Bonahon (Universit y o f South -
ern California ) an d Lawrenc e Siebenman n (Institute s de s Haute s Etude s 
Scientifiques) di d fin d a  wa y t o tel l the m apar t i n 1981 . Subsequently , 
David Gaba i fro m Caltec h manage d t o sho w tha t thes e tw o mutant s d o 
not have th e sam e genu s an d henc e must b e distinct . Genus was enoug h 
to capture the essence of their difference . 



Types of Knots 

5.1 Toru s Knots 

We have already looked at several particular types of knots. For instance, 
we worked with alternating knots in Section 1.1 and rational knots in Sec-
tion 2.3. In this section, we look at torus knots, that is, knots that lie on an 
unknotted torus, without crossing over or under themselves as they lie on 
the torus. Figure 5.1 is a picture of the trefoil knot on a torus. 

Figure 5.1 A  trefoil knot on a torus. 
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We call a curve that runs once the short way around the torus a merid-
ian curve. A curve that runs once around th e torus the long way is called 
a longitud e curv e (Figur e 5.2) . The trefoi l kno t i n Figur e 5.1 wraps thre e 
times meridionally aroun d th e torus and twic e longitudinally. We can see 
that these wrapping numbers are correct by adding the meridian and lon -
gitude curves to the torus on which th e trefoi l sits , and the n countin g th e 
number o f time s the trefoi l crosse s each . The trefoi l crosse s the longitud e 
three times. In order to do so, it must wrap around th e torus in the merid -
ional directio n thre e times . Th e trefoi l crosse s th e meridia n twice , s o i t 
must wra p aroun d th e toru s i n th e longitudina l directio n tw o times . We 
call th e trefoi l kno t a  (3 , 2)~torus kno t (Figur e 5.3) . Figure 5. 4 i s a  (4 , 3)-
torus knot. Every torus knot is a (p, ^)-torus knot for some pair of integers. 
In fact , th e tw o integer s wil l alway s b e relativel y prim e (tha t is , thei r 
greatest common divisor is 1). 

Figure 52 A  meridian and longitude on a torus. 

Figure 53 Th e trefoil is a (3,2)-torus knot . 

Figure 5.4 A  (4,3)~toru s knot. 
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This next knot (Figur e 5.5) lie s on a  torus , but i t doesn' t loo k like th e 
(p, g)-torus knots we have drawn. However, we can deform i t until it looks 
more like the torus knot that it is. 

Figure 5.5 Two  pictures of the same torus knot. 

Exercise 5A  Wha t torus knot is shown in Figure 5.6? 

Figure 5.6 Myster y torus knot. 

How d o w e g o abou t drawin g a  (p , ^Horus knot ? Well , suppose w e 
want t o draw a  (5 , 3)~torus knot. I t wraps five  times meridionally aroun d 
the torus so i t should cros s the longitude five  times . We mark fiv e point s 
on the outsid e equato r o f th e toru s an d five  point s o n th e inside equato r 
(Figure 5.7) . W e als o wan t th e kno t t o wra p thre e time s longitudinall y 
around th e torus . W e attac h eac h poin t tha t w e marke d o n th e outsid e 
eqtlator of the torus to the corresponding poin t on the inside equator, uti -
lizing a  stran d tha t run s directl y acros s th e botto m o f th e toru s (Figur e 
5.8). Now, we attach each point on the outside equator t o the point on th e 
inside equator tha t i s a 3/5 tur n clockwis e from th e outside poin t (mean -
ing we jump ahead thre e points) , utilizing a  strand tha t runs ove r th e to p 
of the torus (Figure 5,9). The result is a knot that travels three times longi-
tudinally around the torus and five times meridionally. 
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Marking points on the equators. 

Attach points by strands across the bottom of the torus. 

Figure 5.9 Constructin g a (5,3)-torus knot. 

Similarly, if we want to draw a (p, ^)-torus knot, we just place p points 
around the inside and outside equators of the torus, attach the inside and 
outside points directly across the bottom of the torus, and then attach each 
outside point to the inside point that is clockwise q points ahead, using a 
strand that goes over the top of the torus. 

Exercise 5.2 Dra w a (4,3)-torus knot. 

Exercise 5.3  What would happen if we tried to draw a torus knot where 
p and q were not relatively prime? Say a (3,6)-torus knot? 

Exercise 5.4  Sho w that a  (p , ^)-torus knot alway s has a projection wit h 
p(q — 1) crossings. 

In fact, every (p, qhtorus knot is also a {q, p)-torus knot. Say for instance 
that we have the trefoil knot , which we have seen is a (3 , 2)-torus knot . 

Figure 5.7 

Figure 5.8 
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Remove a  disk fro m th e toru s tha t th e kno t i s sitting on , where tha t dis k 
does not touch the knot. As we saw in Figure 4.34, we can deform a  toru s 
with one boundary component into two bands that are attached to one an-
other. A s th e deformatio n occurs , w e carr y alon g th e knot . Th e shorte r 
band correspond s to a meridian o f the torus, while the longer band corre -
sponds to a longitude of the torus. 

Take th e longe r ban d an d tur n i t insid e out . The n tak e th e shorte r 
band an d tur n i t insid e ou t also . We ca n no w defor m ou r tw o attache d 
bands back out into a torus with one boundary component , but now wit h 
the role s o f th e tw o band s reversed . Th e ban d tha t originall y corre -
sponded to a longitude on the old torus now corresponds to a meridian o n 
the new torus, and the band tha t originally corresponded t o a meridian o n 
the old toru s now correspond s t o a  longitude o n the new torus . Since th e 
meridian and the longitude have been exchanged, the knot is now a  (2, 3)~ 
torus knot on the new torus (Figure 5.10). 

Figure 510 A  (3,2)-toru s knot is a (2,3)-torus knot . 

This proces s work s jus t a s wel l t o sho w tha t an y (p , g)-torus kno t i s 
also a (q,  p)-torus knot. In conjunction wit h Exercise 5.4, this implies that a 
(p, ^Horus kno t ha s a  projection wit h p(q  -  1 ) crossings and  a projectio n 
with q(p  -  1 ) crossings. Therefore, th e crossing numbe r fo r a  (p , ^Horu s 
knot i s a t mos t th e smalle r o f p(q  — 1 ) and q(p  —  1) . It has recentl y bee n 
proved b y Kuni o Murasug i o f th e Universit y o f Toront o tha t i n fac t th e 
smaller o f p(q  -  1 ) and q(p  -  1 ) is exactly the crossing numbe r o f a  (p , qY 
torus knot. [See (Murasugi, 1991).] 
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A solid toru s is a doughnut wher e we include both the interior o f th e 
doughnut a s well as the surface. The core curve of a solid torus is the triv-
ial knot tha t run s once around th e cente r o f th e doughnut . A  meridiona l 
disk of the solid torus is a disk in the solid torus that has a meridian curv e 
as its boundary (Figur e 5.11). 

Core curve 

Meridional disk 

Figure 511 Th e core curve and a meridional disk in a solid torus. 

Exercise 5.5  Le t K  b e a  (p , ^)-toru s kno t sittin g o n a  toru s tha t i s th e 
boundary o f a  solid torus . Let J be the cor e curve a t th e cente r o f th e 
solid torus . Determine the linking number o f J and K.  What if K sits on 
the torus as a {q, p)-torus knot? 

Figure 5.12 shows the 819 knot. 

Figure 512 Th e 819 knot. 

Exercise 5.6  Sho w that the 819 knot is the (3,4)-torus knot (using either a 
series of pictures or by making it out of string). 

This las t exampl e demonstrate s tha t i t i s no t a t al l obviou s whe n a 
given knot is a torus knot . 
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(^(Unsolved Question  1 
Find a n algorith m tha t wil l determin e whethe r o r not a  given projec -
tion is the projection o f a torus knot. This is hard sinc e it assumes tha t 
you can tell whether o r not a projection i s a projection o f the unknot, a 
difficult proble m that was solved by Wolfgang Haken, but that has yet 
to be pu t i n th e for m o f a n algorith m tha t ca n be implemente d o n a 
computer, as we mentioned in Section 1.1. 

c©(Unsolved Question  2 

Show that c(J#K) =  c(J)  + c(K)  holds when / and K are torus knots. 

c&(Unsolved Question S 

How about if / is a torus knot and K  is an alternating knot? See Section 
6.2. 

c©^^Unsolved Question  4 

Is the unknottin g numbe r o f a  (p , g)-torus kno t equa l t o ( p —  l)(q  — 
l)/2? [Hold  the presses: Peter Kronheimer (a t Oxford) an d Tom Mrowka 
(at Caltech) recently announced a  positive solution to this question!] 

Exercise 5.7  Sho w tha t i n the specifi c cas e tha t (p , q) =  (3 , 4), the (p , q)-
torus knot can be unknotted with (p - l)(q  -  l ) / 2 crossing changes. 

What abou t determinin g th e genus o f a  minimal Seifer t surfac e span -
ning a  given toru s knot ? I n fact , toru s knot s ar e like alternatin g knot s i n 
that Seifert' s algorith m applied t o a projection a s earlier wil l yield a  mini-
mal genu s Seifer t surface . Bot h toru s knot s an d alternatin g knot s fal l i n 
the category of alternative knots that we mentioned in Section 4.3. 

Exercise 5.8  (a ) Applying th e resul t fro m th e previous paragraph , us e a 
standard projection as we described before to determine the genus of a 
(p, ^)-torus knot. 

(b) Doe s i t matte r i f th e projectio n come s fro m th e kno t repre -
sented as a {q, p)-torus knot rather than a (p, ^)-torus knot? 

One woul d lik e t o determin e th e stic k numbe r o f toru s knots . I n 
(Adams et al, 1997 Chapter 1  references), three students and I showed tha t 
the stic k number o f a  (p,p-l)-toru s kno t was exactl y 2p . This was alread y 
known for the trefoil knot , which is a (3,2)-torus knot with stick number 6 . 
We used th e idea o f curvature o f a  knot to get a lower bound o f 2p on th e 
stick number an d we demonstrated tha t for any positive integer p > 3 , the 
(p,p-l)-torus knot could be constructed with 2p sticks. 
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Independently, th e Korea n mathematicia n Gy o Tae k Jin showe d tha t 
the stic k numbe r o f an y (p,^)~toru s kno t i s 2 p i f p>q>p/2.  (Jin , 199 7 
Chapter 1  references) I n other words , he determined th e exact stick num -
ber fo r approximatel y hal f th e torus knots , those for which the second in -
teger q  is at least half a s big as p. He utilized a  variation on bridge numbe r 
called superbridg e numbe r i n orde r t o obtai n hi s lowe r bound s o n stic k 
number. 

c&Open Questions 

1. Determin e the stick number for (p,^)-torus knots where q < p/2. 

2. A s a n explici t example , determin e th e stic k number s fo r th e 2 -
braids, which i s to say , the (p,2)-toru s knots . I t i s remarkable tha t w e 
do not yet know the answer to this simply stated question . 

We ca n generaliz e th e notio n o f a  toru s knot . B y definition , a  toru s 
knot i s a nontrivial knot tha t can be placed o n the surface o f a  standardl y 
embedded toru s withou t crossin g ove r o r unde r itsel f o n th e surface . B y 
standardly embedded, we mean that the torus is unknotted i n space. But cer-
tainly, there will be knots that cannot be placed on a standardly embedde d 
torus but that can be placed on a standardly embedded genus two surface . 

For lack of a better name, let's call these two-embeddable knots , since 
they can be embedded (place d without any crossings) on a standardly em -
bedded genu s tw o surface . Fo r instance , th e figure-eigh t kno t i s a  two -
embeddable kno t (Figur e 5.13) . More generally , we wil l say tha t a  knot K 
is an w-embeddable kno t if K  can be placed o n a  genus n  standardly em -
bedded surfac e withou t crossings , bu t K  canno t b e place d o n an y stan -
dardly embedded surface of lower genus without crossings. 

Figure 5.13 Th e figure-eight kno t is a two-embeddable knot . 

Exercise 5.9  Determin e the minimal genus standardly embedded surfac e 
that the 52 knot can be embedded on , given that i t is not a  torus knot . 

Exercise 5.10  Sho w that a knot with bridge number b  is an n-embeddabl e 
knot where n < b. 
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Exercise 5.11  Sho w tha t an y kno t i s a n n-embeddabl e kno t fo r som e n . 
(Hint Tak e a projection for the knot and have the strands at a crossing 
run ove r an d unde r a  handle o f the surface . Th e surface tha t yo u us e 
need only be isotopic to a standardly embedded surface. ) 

This las t exercis e show s tha t w e ca n hav e a  hierarch y o f knots , de -
pending o n th e minima l genu s o f a  standardl y embedde d surfac e tha t 
they lie on. This is one measure of the complexity of a knot. This particular 
measure o f complexit y doe s no t ge t mentione d muc h i n kno t theory . In -
stead, knot theorists use an invariant called tunnel  number, which is closely 
related t o thi s invariant . We will not have tim e to discuss tunne l numbe r 
in this book. 

Exercise 5.12  Suppos e K  is a n n-embeddabl e kno t an d suppos e tha t K 
can be embedded o n a genus n surface suc h that the surface i s cut into 
two piece s by th e knot . Sho w tha t th e genu s o f K  (tha t i s t o say , th e 
minimal genus of a Seifert surface for K)  is at most n — 1 . 

5.2 Satellit e Knots 

A secon d se t o f knot s tha t ha s become ver y importan t i n recen t year s i s 
the se t of satellit e knots . Let K\  be a  knot insid e an unknotted soli d toru s 
(Figure 5.14) . We kno t tha t soli d toru s i n th e shap e o f a  secon d kno t K 2 

(Figure 5.15) . This wil l take th e kno t K t tha t lie s inside th e origina l soli d 
torus to a  new kno t inside the knotted soli d torus . We call this new knot , 
K3, a satellite knot. The knot K2 *

s called the companion knot of the satel-
lite knot. We always assume that the companion knot is a nontrivial knot , 
since otherwise the resulting satellite knot would just be Kt back again. We 
also always assume that the knot iCx hits every meridional disk of the solid 
torus, and i t cannot be isotoped to miss any of them. We think of the satel-
lite knot a s a  knot tha t stay s within a  solid toru s tha t has th e companio n 
knot as its core curve, just as a satellite stays within orbi t around a  planet . 

Figure 514 A  kno t Ki inside a solid torus. 
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Figure 5.15 Kno t the solid torus like K2. 

Notice tha t ther e i s a  knotte d toru s i n spac e tha t misse s th e satellit e 
knot, lying in the complement o f the knot. In fact, thi s knotted toru s is al-
ways incompressible, but proving this would tak e a substantial amount of 
work. If , o n the other hand, we take the original knot Ki  to be an unknot , 
but sittin g insid e th e soli d toru s twiste d u p a s i n Figur e 5.16 , the n th e 
resulting satellit e kno t i s calle d a  Whitehea d doubl e o f th e companio n 
knot. Th e nam e refer s t o th e fac t tha t th e kno t K\  her e resemble s th e 
Whitehead link . 

Figure 5.16 A  Whitehead double of the trefoil . 

A Whitehea d doubl e i s no t unique . W e can cu t th e soli d toru s ope n 
along a  meridiona l disk , twis t on e en d som e numbe r o f times , an d the n 
glue the meridional disk s back togethe r again , to obtain a  homeomorphi c 
copy of the solid torus (Figure 5.17). But now two strands of K\ are twisted 
around eac h other . Then , when w e kno t thi s soli d toru s a s a  trefoi l knot , 
we obtai n a  second Whitehea d doubl e o f the trefoil . Bot h of these White -
head double s have the property tha t i f we cu t open three-spac e alon g th e 
knotted torus , we get two pieces, one of which is the solid torus with K\  in 
it, and on e of which i s three-space with th e interior o f a  solid toru s knot -
ted as a trefoil knot removed from it . 

Figure 5.17 A  second Whitehead double of the trefoil . 
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If the origina l kno t Ki  i s again unknotted , bu t sittin g insid e th e soli d 
torus a s i n Figur e 5.18 , the n th e resultin g satellit e kno t i s calle d a  two -
strand cable of the companion knot. It's as if we had a  cable that ran twice 
around th e companio n knot . Again , th e two-stran d cabl e wil l no t b e 
unique, as we can add twists to it. 

Figure 5.18 Th e two-strand cable of a knot. 

Sxercise 5A3  Dra w a satellite knot corresponding to K\  and K 2 from Fig -
ure 5.19. Now dra w a  second one . (You needn't prove tha t the secon d 
one is distinct.) 

Figure 5.19 Dra w a satellite knot corresponding to Ki and K 2. 

The operation of forming a  satellite knot can be thought o f as a gener -
alization of the idea of composition. If Ki only has one strand tha t reache s 
longitudinally arotin d th e soli d toru s a s i n Figur e 5.20 , then th e satellit e 
knot forme d b y knottin g th e soli d toru s lik e K 2 i s i n fac t th e composit e 
knot Ki#K 2. (Notice th e swallow-follo w toru s tha t w e mentione d i n th e 
previous chapter. ) 

Figure 5.20 Satellit e knots are sometimes just composites. 
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We could for m a  satellit e kno t s o tha t th e companio n itsel f i s als o a 
satellite knot . Jus t a s ever y composit e kno t factor s int o a  uniqu e se t o f 
prime facto r knots , we ca n as k i f it' s tru e tha t ever y satellit e kno t i s ob-
tained fro m a  uniqu e sequenc e o f takin g satellites . I n fact , th e answe r i s 
yes, but it was only proved in 1987 [see (Soma, 1987)]. 

Exercise 5.14  Determin e ho w thi s satellit e kno t wa s made (Figur e 5.21) . 
In particular, identify it s companion and draw i t inside the solid toru s 
before the solid torus is knotted. 

Figure 5.21 Ho w was this satellite knot constructed ? 

^(Unsolved Question 

It is amazing tha t the answer t o this question has not yet been found . 
Show tha t th e crossin g numbe r o f a  satellit e kno t i s greate r tha n th e 
crossing number o f th e companion tha t i t was constructed from . Thi s 
certainly seem s lik e i t ough t t o b e tru e bu t n o on e ha s bee n abl e t o 
prove it. 

If the knot K\ that we start with is a torus knot, then we call the result -
ing satellite knot with companion K 2 a cable knot on K2 (Figure 5.22). We 
can think of it as taking a cable that wraps around th e knot K 2 a total of p 
times meridionally and q  times longitudinally. In one field of mathematic s 
called algebraic geometry, the most prevalent types of knots are cable knots. 
Sometimes the cable knots are cables on cables on cables on torus knots. 

Figure 522 A  cabl e knot. 
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5.3 Hyperboli c Knots 

It was no t unti l 197 4 that anyone realized ther e was suc h a  thing as a hy -
perbolic knot. Now, it appears that among prime knots, the overwhelmin g 
majority ar e hyperboli c knots . (Note:  What d o w e mea n whe n w e tal k 
about th e "vas t majority " o f an infinit e se t of prim e knots ? We mean tha t 
for all of the prime knots of n or fewer crossings , a certain large percentage 
of them are hyperbolic. As n approaches » , tha t percentage i s expected t o 
approach 100% . However , thi s ha s no t bee n proved . I t i s a n interestin g 
open conjecture. ) I n fact , Willia m Thursto n prove d i n 197 8 that th e onl y 
knots tha t ar e no t hyperboli c knot s ar e toru s knot s an d satellit e knots . 
(Here we are including al l composite knots as satellite knots, contrary to a 
few authors. ) S o in th e thre e section s i n thi s chapte r s o far , w e hav e de -
fined thre e categories of knots, such that every knot falls into exactly one of 
the three categories (Figure 5.23). 

Torus knots Satellit e knots Hyperboli c knots 

Figure 5.23 Ever y knot ends up in one of these three baskets. 

Before 1974 , no on e realized tha t a  knot complemen t coul d b e hyper -
bolic. A t tha t time , Rober t Riley , wh o wa s a n America n workin g o n hi s 
Ph.D. a t Southampton i n England, showe d tha t th e figure-eigh t kno t wa s 
hyperbolic. Afte r muc h effort , h e als o showe d tha t tw o othe r knot s wer e 
liyperbolic. H e the n proceede d t o writ e a n immens e compute r progra m 
that wa s designe d t o attemp t t o sho w tha t ther e wer e additiona l hyper -
bolic knots. William Thurston, who was then a  professor a t Princeton, ha d 
been thinking abou t relate d ideas . In the summer o f 1976 , he went t o visi t 
England an d h e me t Rober t Rile y i n the . coffee roo m a t th e Universit y o f 
Warwick. Afte r discussion s wit h Rile y abou t hi s work , Thurston' s idea s 
crystallized. H e realize d tha t i n fact , almos t al l knots ar e hyperbolic . Th e 
field o f hyperboli c three-manifold s cam e int o existenc e an d ha s sinc e be-
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come a n essentia l par t o f topology . Thursto n receive d th e Field s meda l 
(the mathematics version of a Nobel prize) in 1982. 

But what i s a hyperbolic knot? First, let's look at the official definition . 

A hyperbolic knot is a knot that has a complement tha t can be given a 
metric of constant curvature —1 . 

Now, that's a mouthful. Wha t does it mean? A metric is simply a wa y 
to measure distance . Thus, we ca n measur e distanc e i n th e kno t comple -
ment, tha t is , in three-spac e minu s th e knot . Give n tw o point s i n three -
space minus the knot, we can determine the distance between them . Usu -
ally, we measur e th e distance between tw o point s PQ(X Q/ y0, z 0) an d P\{xy 
yy z{)  in three-space using the formul a 

d(Po,Pi)= kxt  -  x Q)2 + (y t -  y 0)
2 +  (z t -  z 0)

2 

This method for measuring distance is called the Euclidean metric. 
But now , i n th e complemen t o f thi s knot , w e wil l b e measurin g dis -

tance in a  differen t way , using a  distance measure tha t ha s curvature —  1. 
What d o w e mea n b y that ? Her e i s a  two-dimensiona l analog . A  spher e 
has positive curvature (Figur e 5.24a) . If we pick a  poin t o n th e surface o f 
the sphere and take cross sections in several directions through tha t point , 
all o f th e cros s section s ar e circle s tha t curv e i n th e sam e direction . A 
plane, however, has zero curvature (Figur e 5.24b) . I f we pic k a  poin t an d 
take cross sections in several directions through the point, we always get a 
line, which has no curvature. But a saddle has negative curvature (Figur e 
5.24c). If we take the central point, and take cross sections in two differen t 
directions throug h tha t point , w e obtai n tw o parabolas , on e o f whic h 
opens u p an d on e o f whic h open s down . Tha t i s the essenc e o f negativ e 
curvature. 

/^7 M 
a b  c 

Figure 524 (a ) Positive curvature, (b) Zero curvature, (c ) Negative curva -
ture. 

We are interested in three-dimensional space (since the complement of 
a kno t i s three-dimensional), s o we can' t dra w th e pictures lik e we coul d 
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of the sphere , plane, and saddle . But the Euclidean metri c fo r three-spac e 
that we gav e before i s an exampl e o f a  metric with curvatur e zero . It is a 
so-called flat  metric , havin g n o curvature , jus t lik e th e plan e i s flat . Th e 
metric tha t we wan t t o put o n th e complement o f th e kno t i s not flat , bu t 
rather ha s curvatur e - 1 . Th e geometry tha t result s i s called hyperbolic  ge-
ometry, and the metric is called a  hyperbolic metric. 

We describ e th e simples t exampl e o f a  three-dimensiona l spac e tha t 
has a  hyperboli c metric . I t i s calle d hyperboli c three-space , an d i s de -
noted b y H 3. Th e particula r mode l o f H 3 tha t w e wil l loo k a t i s calle d 
the Poincare  model,  afte r th e Frenc h mathematicia n Henr i Poincar e 
(1854-1912). The points i n thi s model ar e the points i n three-space insid e 
the unit ball. So 

H 3 =  l(x,  y, z): x 2 +  y2 4 - z2 < 1 } 

Now w e nee d t o describ e ho w t o measur e th e distanc e betwee n tw o 
points in H3. Le t Pi and P 2 be two such points . First, we describe a partic-
ular path through H3 fro m ?! to P2 (Figure 5.25). Let C be part of a circle in 
H 3 tha t ha s bot h o f it s endpoint s o n th e uni t sphere , i s perpendicula r t o 
the uni t spher e a t it s endpoints , and passe s through th e tw o point s Pi  t o 
P2. Assuming Pi  and P 2 do not both lie  on a  line segment tha t i s a diame-
ter o f th e uni t sphere , ther e i s always a  uniqu e suc h ar c o f a  circle . I f Pi 
and P 2 do lie on the same diameter, we will replace the arc of a circle with 
that line segment that is a diameter passing through Pi  and P2. 

Figure 5.25 Path s between points in H3. 

It will turn out that the shortest path in hyperbolic three-space from P t 

to P2 is the path within the arc of a circle or vertical line from Pi  to P2. Let's 
call this path w.  Any arc of a circle or diameter i n H3 tha t i s perpendicula r 
to the unit sphere is called a  geodesic in H3 . A geodesic is a curve that has 
the property tha t fo r an y two points Pi an d P 2 within it , the shortes t pat h 
from P i t o P 2 als o lie s i n th e curve . Geodesie s i n H 3 pla y th e rol e tha t 
straight line s pla y i n Euclidea n space . Notic e tha t straigh t line s ar e 
geodesies in Euclidean space , as the shortest path between any two point s 
in a line also lies in the line. 
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In orde r t o measure th e distance between Pi  an d P 2, we integrat e th e 
function 2/( 1 -  r 2) alon g th e shortes t pat h fro m P\  t o P 2, where r  is th e 
distance to the origin. Therefore, the official definitio n o f the distance fro m 
?! to P2 is 

(ids 

w 

If you ar e unfamilia r wit h a  path integra l o f thi s type , it' s jus t on e mor e 
reason fo r wantin g t o learn calculus . If you ar e familia r wit h a  path inte -
gral of this type, try the following exercise . 

Exercise 5.15  Fin d th e hyperboli c distanc e betwee n th e tw o point s 
(0, 0, 0) and (0 , 0, |) i n th e Poincare model . (Not e tha t a s we ar e inte-
grating along a horizontal line, the path differential ds  just becomes dx 
and r 2 become s x 2.) Wha t abou t the distance between (0 , 0, 0) and (0 , 
0, a) as a approaches the value 1? 

Hyperbolic spac e has lots of interesting properties . For example, note 
that i f w e for m a  triangl e i n hyperboli c spac e suc h tha t eac h o f it s thre e 
edges comes from segment s o f geodesies, the sum o f the angles of the tri -
angle is less than the sum of the angles of the corresponding Euclidean tri-
angle with the same vertices. Since the sum of the angles of the Euclidea n 
triangle is exactly 180°, this means that the sum of the angles of the hyper -
bolic triangle is strictly less than 180 ° (Figure 5.26). This amazing fac t wil l 
always be the case. The angles of any triangle in hyperbolic three-space add up 
to less than 180°, Strange, but true. 

Figure 5.26 Th e angles of a hyperbolic triangle add up to less than 180°. 

There ar e numerou s othe r interestin g propertie s o f hyperboli c three -
space tha t w e wil l no t ge t int o here , bu t wha t w e wil l d o i s describ e 
how w e ca n us e piece s o f hyperboli c three-spac e i n orde r t o obtai n so -
called hyperbolic manifolds. The pieces that we use are tetrahedra (Figur e 
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5.27). Th e edge s o f th e tetrahedr a ar e geodesie s i n hyperboli c spac e an d 
the faces ar e geodesic planes in hyperbolic space . It's no big surprise tha t 
these geodesi c plane s ar e piece s o f sphere s tha t ar e perpendicula r t o th e 
unit spher e boundin g H 3 o r disk s containe d i n plane s tha t pas s throug h 
the origin in H3. 

Figure 5.27 Geodesi c planes and tetrahedra in H3. 

Remember ho w w e constructe d surface s i n Sectio n 4. 1 by gluin g to -
gether pairs of edges in a set of triangles until every edge had been glue d 
to som e othe r edge . Analogously , i t i s possibl e t o glu e togethe r pair s o f 
faces i n a  se t o f tetrahedr a unti l ever y fac e ha s been glue d t o some othe r 
face. Whe n don e correctly , th e resul t ca n sometime s b e a  kno t comple -
ment. If the tetrahedra tha t we glue together ar e actually hyperbolic tetra -
hedra, i n tha t the y si t insid e hyperboli c space , an d i f w e glu e the m to -
gether alon g thei r face s s o tha t thei r face s matc h withou t distortion , i n 
order tha t th e hyperbolic metho d o f measuring distance s within th e indi -
vidual tetrahedr a match , the resul t i s a  hyperboli c kno t complement . W e 
can use the hyperbolic method fo r measuring distance within the individ -
ual tetrahedr a i n order t o obtain a  hyperboli c metho d fo r measurin g dis -
tance in the entire knot complement. We then say that the knot is a hyper-
bolic knot. 

Every hyperbolic knot has a hyperbolic volume. This is a positive real 
number tha t ca n b e compute d ou t t o a s man y decima l place s a s ar e 
needed. I t i s simply th e sum o f th e volumes o f th e individua l hyperboli c 
tetrahedra tha t make up the knot complement , and i t gives the volume of 
the complemen t o f th e knot , a s measure d b y ou r hyperboli c metric . Al -
though i t appear s tha t th e volum e o f three-spac e minu s th e kno t woul d 
be infinite , i t i s i n fac t finit e whe n w e measur e i t usin g thi s hyperboli c 
method o f measurin g volume . The hyperbolic volum e i s an invarian t fo r 
the hyperbolic knots , as it depends onl y on the knot itsel f an d no t on an y 
particular projectio n o f th e knot . Figur e 5.2 8 show s th e volumes o f som e 
knots. 
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Q3 (D (J) G D 
2.02988321... 2.82812208.. . 5.69302109.. . 12.81031000.. . 

Figure 5.28 Volume s of hyperbolic knots. 

In the table s o f knot s an d link s a t the end o f the book, we hav e liste d 
the volumes of all of the hyperbolic knots and links next to the pictures of 
the knot s an d links . Notice ho w fe w knot s an d link s ar e no t hyperbolic . 
(We have liste d th e hyperboli c volum e o f a  nonhyperboli c kno t a s 0. ) I n 
fact, in the tables of prime knots, all but six of the nontrivial knots of 10 or 
fewer crossings are hyperbolic. 

Two hyperboli c knot s wit h distinc t volume s mus t b e distinc t knots . 
At leas t i n ou r tabl e throug h 1 0 crossing knots , volum e turn s ou t t o b e 
an excellen t wa y t o tel l knot s apart , distinguishin g al l bu t th e 6  nonhy -
perbolic knot s (al l o f whic h happe n t o b e toru s knots) . I n fact , ther e are 
distinct knot s tha t hav e th e sam e volume . Fo r example , Figur e 5.2 9 de -
picts the 52 knot and a  12-crossing knot, both o f which have the same vol-
ume. 

V ^ L ^ booce o 
Figure 5.29 Tw o knots with the same volume. 

More generally , i f w e flip a  tangl e i n a  hyperboli c kno t t o produc e 
a mutan t knot , th e mutan t wil l als o b e a  hyperboli c kno t and  i t wil l 
have th e sam e volume . So we can' t tel l the knot s i n Figur e 5.3 0 apar t b y 
volume. Bu t i n som e sense , thes e example s o f knot s wit h th e sam e vol -
ume ar e exceptional . Almos t al l knot s ca n b e distinguishe d b y thei r vol -
ume. 
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Figure 5.30 Mutant s have the same volume. 

One might wonder wha t i s the smalles t volume of a  knot. Although i t 
is not immediately obvious that there is a smallest volume, since as we 
went up i n the knot tables, perhaps ther e are knots with volumes get -
ting smalle r an d smaller , bu t wor k o f Willia m Thursto n an d Troel s 
Jorgensen implie s tha t ther e i s a  smalles t volum e knot . I n 1978 , 
Thurston conjecture d tha t i t was th e figure-eigh t knot , with a  volum e 
of 2.0298 . . . . I  worked o n thi s problem o n an d of f fo r fiftee n years , 
but was not able to solve it. In 1997, Robert Meyerhoff an d Chun Cao , 
both a t Bosto n College , proved tha t th e figure-eigh t kno t wa s i n fac t 
the hyperbolic knot of smallest volume. The proof i s difficult an d ulti -
mately relie s o n a  rigorous compute r progra m t o sho w tha t al l othe r 
possibilities have been eliminated . 

c& (Unsolved Questions 

1, Wha t is the second smalles t volume hyperbolic knot. Is it 52, which 
has a volume of 2.82812208. .  .  ? 

2. I s any one of the volumes a  rational number a  lb, wher e a and b  are 
integers? I s an y on e o f th e volume s a n irrationa l numbe r (no t o f th e 
form alb  wher e a  an d b  ar e integers) ? Amazingl y enough , eve n 
though we can calculate the volume o f a knot ou t to as many decima l 
places a s we want , we canno t tel l whether an y on e o f th e volumes i s 
either rational or irrational. 

How d o w e actuall y comput e th e volum e o f a  knot? W e first cu t th e 
complement o f th e kno t int o a  finite se t o f tetrahedra . W e then plac e th e 
tetrahedra i n hyperboli c space . In orde r tha t thes e hyperboli c tetrahedr a 
glue togethe r correctl y t o giv e th e hyperboli c metric , a  se t o f equation s 
must be satisfied . I f there ar e n  tetrahedra, we obtai n n  polynomial equa -
tions i n n  variables . The variable s ar e i n fac t comple x variables . We the n 
use numerical methods to solve this system of equations numerically. Th e 
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solution t o the system determine s th e hyperbolic metri c o n each tetrahe -
dron. We can then comput e the hyperbolic volume o f each of the tetrahe-
dra and add the volumes to get the volume of the knot complemen t (Fig -
ure 5.31). 

Volume= 2.82812208... 

Figure 5.31 Findin g the hyperbolic volume of a knot. 

In fact , i t is difficult an d arduous t o do this procedure by hand i n all 
but the simplest cases of knots. Luckily, we don't have to do it. Jeff Week s 
(a 198 5 Ph.D. student unde r Willia m Thurston ) ha s written a  compute r 
program tha t doe s it for us. We simply input a  knot by drawing i t on the 
screen wit h a  mouse. The mouse ca n then be used t o click on any cross-
ings tha t we want change d in order to obtain the knot tha t we want. The 
computer take s ove r fro m there , cutting th e knot complemen t int o tetra -
hedra, generatin g th e set of equations tha t mus t b e satisfied, findin g th e 
numerical solutio n of the set of equations, and then calculatin g the corre-
sponding volume. 

Given two knots that are hyperbolic and that have a  reasonable num -
ber o f crossings (say , no more tha n 100) , Jeff Weeks' s progra m i s able to 
determine whether or not they are the same knot. This is the original ques-
tion we discussed in Section 1.1, which can now be solved by computer, at 
least whe n w e restric t ourselve s t o hyperboli c knot s wit h fe w enoug h 
crossings. 

c& (Unsolved Question 

Write a computer program that will determine whether or not any two 
knots with a  reasonable number o f crossings are the same. What's the 
idea here? Start with a knot. First, the computer program needs to rec-
ognize whether o r not the knot is prime. It's enough for the computer 
to chec k whethe r th e knot i s satellite o r not, since we have see n tha t 
composite knots are a special case of satellite knots. 

If i t i s a  satellit e knot , cu t the knot complemen t ope n alon g th e 
knotted toru s (which , remember, is incompressible) tha t always exist s 
in a satellite knot complement . To the outside of the torus wil l be one 
knot complement (th e complement of the companion knot ) and to the 
inside wil l be a link complement . Continu e t o cut each o f these two 

<*-»(4)"'-i 
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pieces open along incompressible tor i until you have a  set of knot an d 
link complements , each of which i s either a  torus link complement o r 
a hyperbolic link complement . 

Given two knots, perform thi s decomposition o f each of their com -
plements int o toru s an d hyperboli c lin k complements . Jef f Weeks' s 
program ca n currentl y determin e whethe r o r no t th e hyperboli c lin k 
complements i n th e tw o decomposition s ar e th e same . A  progra m 
needs to be written to determine whether or not the torus link comple-
ments i n th e tw o decomposition s ar e th e same . The n th e progra m 
needs t o check how th e various pieces are glued back togethe r t o de -
cide if the two knots are the same. The biggest open question is how t o 
write a program that finds these incompressible tori . 

This sectio n ha s been a  bi t sketchie r tha n som e o f th e othe r sections , 
since the level of mathematical background necessar y t o dive deepe r int o 
the topic of hyperbolic knots is somewhat higher than for othe r topics tha t 
we have covered. However, the concept o f hyperbolic knot s is so interest -
ing an d ha s prove d t o be s o valuabl e fo r kno t theory , tha t i t wa s wort h 
discussing, even if we did not go to great depths. 

5.4 Braid s 
This section is not entirely appropriate to this chapter, since braids are not 
a particula r typ e o f knot . However , ever y kno t ca n b e describe d b y a 
braid. Sinc e w e ca n easil y restric t ourselve s t o certai n type s o f braids , 
which then correspond to certain types of knots, braids will generate type s 
of knots . Besides , braids ar e s o beautiful tha t w e can' t pu t the m of f an y 
longer. 

A brai d i s a  se t o f n  strings , al l o f whic h ar e attache d t o a  horizonta l 
bar a t th e to p an d a t th e bottom (Figur e 5.32) . Eac h strin g alway s head s 
downward a s we mov e alon g an y on e o f th e string s fro m th e to p ba r t o 
the bottom bar . Another wa y t o say the sam e thin g i s that eac h string in -
tersects any horizontal plane between the two bars exactly once. 

Figure 5.32 A  braid. 
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We consider tw o braid s t o be equivalen t (Figur e 5.33 ) i f w e ca n rear -
range th e string s i n the two braids t o look the sam e withou t passin g an y 
strings throug h on e anothe r o r themselve s whil e keepin g th e bar s fixe d 
and keepin g th e string s attache d t o th e bars . We are no t allowe d t o pul l 
the string s ove r th e to p o f th e uppe r ba r o r beneat h th e bottom bar . I t i s 
probably helpfu l t o think o f ther e being hug e horizonta l plywoo d sheet s 
at the level of the top and bottom bars, in order to discourage us from try -
ing to pull the strings over and around the bars. 

Figure 5.33 Thes e two braids are equivalent . 

What d o braids hav e t o do with knot s and links ? We can always pul l 
the botto m ba r aroun d an d glu e i t t o th e to p bar , s o tha t th e resultin g 
strings for m a  kno t o r link , calle d th e closur e o f th e brai d (Figur e 5.34) . 
Therefore ever y brai d correspond s t o a  particula r kno t o r link . W e ca n 
think o f ther e bein g a n axi s comin g righ t ou t o f th e page , aroun d whic h 
the closur e o f th e braid i s wrapped . W e then hav e a  close d brai d repre -
sentation of the knot i f there is a choice of orientation o n the knot so that , 
as w e travers e th e kno t i n tha t direction , w e alway s trave l clockwis e 
around th e axi s withou t an y backtracking . I n Figur e 5.35 , w e se e tw o 
projections o f th e trefoi l wit h axes , th e firs t o f whic h i s no t a  close d 
braid aroun d it s axis, and th e second of which is a closed braid around it s 
axis. 

Figure 5.34 Th e closure of a braid. 
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a b 

Figure 535 (a ) Not a closed braid, (b) A closed braid. 

Exercise 5.16  Dra w close d brai d representation s o f eac h o f thes e knot s 
(Figure 5.36) . (Hint:  You may wan t t o mak e the m ou t o f strin g o r a n 
extension cord an d the n see if you can rearrange them to travel clock -
wise aroun d a  pencil . Anothe r optio n i s t o mak e a  choic e o f a n axi s 
and then start to have the knot travel around the axis clockwise. When-
ever i t start s t o travel counterclockwise , pas s tha t portio n o f th e kno t 
through the axis to fix the problem. It is recommended tha t you do no t 
try to use the technique that follows thi s problem in order to do it.) 

Figure 536 Dra w these knots as closed braids. 

What knots and link s can be represented a s closed braids? Amazingl y 
enough, they all can. Every knot or link is a closed braid. This was first prove d 
by J. W. Alexander i n 1923 (before h e started foolin g aroun d wit h polyno -
mials; see the next chapter). 

We will use the idea of bridges from Sectio n 3.2 to prove this. Let L be 
our knot or link in a particular projection , and let' s orient each of the com-
ponents o f L . For any stran d o f th e kno t betwee n a n overcrossin g an d a n 
undercrossing, choos e a  poin t o n th e strand . A s w e travers e th e kno t o r 
link i n th e directio n o f th e orientation , labe l thes e chose n point s P\ 
through Pn (Figure 5.37), where the first poin t Pi was a point that occurre d 
after a n undercrossing . W e can thin k o f thes e labele d point s a s being th e 
intersection o f th e projection plan e with th e knot o r link , and th e strand s 
above an d belo w th e projectio n plan e a s th e bridges . Th e stran d o f th e 
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knot connectin g Pi  t o P 2 lies abov e th e projectio n plane ; the stran d con -
necting P 2 to P 3 lies beneath th e projectio n plane . In fact , th e stran d con -
necting P2{ - i  to P2i always lies above the projection plane , and th e stran d 
connecting P2i to P2j +1 always lies below the projection plane . 

Figure 537 Labe l points P i , . . ., P n. 

Let's isotope (rearrange without cuttin g and pasting ) the projection s o 
that th e n  strand s beneat h th e projectio n plan e ar e line d u p a s i n Figur e 
5.38. We arrange the strands so that the even-numbered point s are all next 
to on e another . W e don' t hav e an y proble m performin g thi s rearrange -
ment under th e projection plane , since we are just sliding nonintersectin g 
arcs aroun d a  bit . O n th e to p sid e o f th e plane , th e bridge s ar e gettin g 
messier, but the y never cros s one another , s o we stil l have perfectly goo d 
bridges. Let A be a straight line in the projection plan e that is a perpendic-
ular bisecto r o f al l o f th e lowe r bridges . Eac h o f th e uppe r bridge s wil l 
then cros s A  a n od d numbe r o f times , sinc e a n uppe r bridg e start s a t a 
point P 2j - i  tha t i s nort h o f segmen t A  an d end s a t th e poin t P 2i tha t i s 
south of segment A. We would like the upper bridges to cross A onl y once, 
so we will do a little bridge work to make it so. 

Figure 538 Rearrangin g the projection to line up the lower bridges. 
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If one of th e upper bridge s does cross A mor e than once , simply tak e 
the second point on the upper bridge where it crosses A after leaving P2i - 1 
and push the upper bridge a little below the projection plane at that poin t 
(Figure 5.39) . Th e on e uppe r bridg e no w split s int o tw o ne w uppe r 
bridges an d a  ne w lowe r bridge . Th e firs t ne w uppe r bridg e crosse s A 
once, while the second ne w uppe r bridg e crosse s A tw o fewer time s tha n 
the original upper bridge did. We can repeat this process with the new up-
per bridge s an d eventuall y wit h th e othe r remainin g uppe r bridge s unti l 
every upper bridge crosses the line A exactly once. 

?*Vi n t J V i 

V. 
Figure 539 Makin g upper bridges cross A once. 

We now draw ou r link as a closed braid wit h axi s A (Figur e 5.40). We 
begin each of the upper bridges at its starting point P2/ -1 in the projectio n 
plane. As we draw the bridge, we have it increase in height above the pro-
jection plan e unti l i t i s directly abov e th e line A,  a t whic h tim e w e ar e a t 
the point on the bridge that used to be where it crossed A. After tha t point , 
we have the bridge decrease in height unti l it reaches the point P2i back in 
the projectio n plane . Similarly , startin g fro m th e even-numbere d points , 
we hav e th e lowe r bridge s decreas e i n heigh t unti l the y ar e directl y be -
neath A,  a t whic h tim e w e ar e a t th e poin t o n the m wher e the y use d t o 
cross under A.  W e then hav e the m increas e in heigh t unti l the y reac h th e 
odd-numbered point s back in the projection plane . 

Figure 5.40 A  lin k is a closed braid . 
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There we have it, a  braid representation for  any  knot  or  link. But now , i f 
every lin k ca n b e represente d a s a  close d braid , w e ar e probabl y in -
terested i n representin g th e lin k a s a  simple brai d wit h a s few string s a s 
possible. 

Let's define th e braid index of a  link to be the least number o f string s 
in a  braid correspondin g t o a  closed-braid representatio n o f th e link . Fo r 
example, the braid index of the unknot i s 1, and th e braid index of the tre-
foil knot is 2. 

Exercise 5.17  Describ e all of the knots and links of braid index 2. 

The braid inde x is an invariant fo r knot s and links , but in general i t is 
difficult t o compute . Putting a  knot o r link in braid for m an d the n count -
ing the string s give s an uppe r boun d o n th e braid index , but ho w d o w e 
know there isn't a braid form o f the knot or link with fewer strings ? In the 
next chapter , we see one way to get a  lower bound o n the braid inde x us-
ing knot polynomials . 

Recently, Shuj i Yamada , o f Ehim e Universit y i n Japan , relate d th e 
braid index to the number of Seifert circles (as in Section 4.3). In particular , 
he prove d th e amazin g fac t tha t th e braid inde x o f a  knot i s equal t o th e 
least number o f Seifert circle s in any projection o f the knot. [Se e (Yamada, 
1987).] In an eve n more recen t paper , Yoshiyuki Ohyam a o f Waseda Uni -
versity i n Japan proved tha t i f L  is a nonsplittable link , c(L) is its crossin g 
number, an d b(L)  is it s brai d index , the n e(L ) >  2(b(L)  -  1) . Notice tha t 
for the figure-eight knot , which has braid index 3, this is actually an equal-
ity. 

How shoul d w e describe a  given braid? A projection o f a braid ca n be 
described b y listin g which o f the string s cros s over an d unde r eac h othe r 
as we move down th e braid. We can arrange i t so that no two crossings in 
the braid occur at exactly the same height. 

For instance , let' s loo k a t three-string braids . I f the firs t strin g crosse s 
over th e second , w e cal l tha t crossin g a  o ^ crossing . I f th e firs t strin g 
crosses unde r th e second , w e cal l i t a n erf 1 crossing . I f th e secon d strin g 
crosses ove r th e third , w e cal l that a n <7 2 crossing, and i f i t crosse s unde r 
the third string , it's a n o r 2l crossin g (Figur e 5.41). Hence the braid show n 
in Figur e 5.4 2 i s describe d completel y b y listin g th e crossing s i n orde r 
from to p to bottom as a2 v\  &\  0-2 1 o"i o^. We call this a word for th e braid. 
More generally , if we have a  braid wit h n  strings, we denote the /* strin g 
crossing ove r th e i  +  1 st string by a z an d th e i™ string crossin g unde r th e 
i +  1st string by a J"1. 
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Figure 5.42 Thi s braid is described by the word a 2 v\  o" i a2
1 a\cri. 

Exercise 5.18  Dra w th e five-string brai d give n by th e word (i i a 2 o* 3 cr̂ T 1 

04 af 1. 

Exercise 5.19  Identif y th e kno t tha t ha s four-strin g brai d wor d (af l <r 2 

0-3 !)2a33. (It is one of the six-crossing knots in the appendix table. ) 

Exercise 5.20  Fin d a  wor d suc h tha t th e closur e o f th e correspondin g 
braid gives the knot 63. 

Exercise 5.21  Sho w that the closure of the n-string braid (GI  a 2 •  •  •  v n~i)m 

is a knot if and only if n and m are relatively prime. 

Exercise 5.22  Chec k tha t th e closur e o f th e n-strin g brai d (o -! a 2 •  •  • 
(Jn-i)

m i s simply the (m, n)-torus knot (assuming m  and n  are relatively 
prime). 

This i s a  hand y wa y t o denot e knot s an d links . Say w e wan t t o de -
scribe a  particula r kno t t o a  frien d ove r th e phone . We just say , "It' s th e 
knot tha t ha s th e close d brai d representatio n correspondin g t o th e wor d 
<J\ (T2 (T3 &21 O 4 <J\ V' 

Besides simplifying phon e conversation s abou t knot s and links , ther e 

or, a,- 1 a* ? '1 u i 

Figure 5.41 Crossings . 

1 
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are some other advantage s to this notation. Fo r instance, suppose a  brai d 
has erf 1 a ; a s par t o f th e wor d tha t describe s it . Then geometrically , thi s 
pair of crossings looks like Figure 5.43. 

Figure 5.43 Th e crossings corresponding to a i
 l a,- . 

A simpl e Typ e I I Reidemeiste r mov e eliminate s bot h crossings , bu t 
leaves us with a n equivalent braid . The effect o n the word i s to eliminat e 
cr^1 or; . The sam e phenomeno n occur s fo r <T Z a J1 also . Fo r exampl e th e 
word a  1 (j 2 03 a21 0 2 °"3 1 °"2 * o"? 1 collapses down to nothing, meaning tha t 
the braid tha t i t represents i s equivalent t o the trivial braid o f four verti -
cal strings that do not cross . 

Notice that a  closed braid ha s a n orientation give n by alway s choos -
ing to orien t th e braid s o that th e directio n o n the strings run s fro m th e 
top to the bottom. 

Exercise 5.23  I f a given word represent s a  knot with a particular orienta -
tion, wha t wor d give s th e sam e kno t bu t wit h th e opposit e orienta -
tion? 

Let's retur n t o ope n braid s fo r a  second . Notic e tha t i f w e hav e tw o 
n-string braids , w e ca n stac k the m o n to p o f eac h othe r t o creat e a  ne w 
braid that is the product of the original two braids (Figure 5.44). 

Figure 5.44 Multiplyin g two braids. 
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Exercise 5.24  (a ) Describ e a n n-strin g brai d I n tha t act s a s a n identit y 
when i t multiplies any other n-string braid. That is to say, multiplying 
a braid B by this braid yields the braid B back again. 

(b) Describ e a n invers e brai d fo r a  give n brai d B . That i s t o say , 
find a  braid B _ 1 that has the property that BB~ l =  I n and B~ lB =  I n. 

(c) Sho w tha t th e multiplicatio n o f n-strin g braid s i s associative , 
namely B!(B2B3) =  {BiB^B^  for an y three n-string braids ByB lf an d B3. 

What w e hav e constructe d i n thi s exercis e i s known i n mathematica l 
circles as a  group. Namely, i t is a set o f elements , in this case the n-strin g 
braids, and a way to multiply elements such that : 

1. Ther e exists an identity element that, when multiplying any element , 
doesn't change it; 

2. Ever y element has an inverse; 

3. Th e multiplication is associative, that is, a(bc) =  (ab)c for any three ele-
ments a, b, c of the group. 

Let B n denote th e grou p o f n-strin g braids . I t i s a  very interestin g ex -
ample of a group. 

Exercise 5.25  I f yo u haven' t see n th e theor y o f group s before , convinc e 
yourself tha t th e integers wit h th e "multiplication " give n by additio n 
form a  group, the real numbers without zero and with the usual multi-
plication form a  group, and th e integers with the usual multiplicatio n 
do not form a  group. 

Note tha t a  particula r elemen t o f B n i s a  brai d togethe r wit h al l th e 
other braids that are equivalent t o it. We say that an element is an equiva -
lence clas s o f braids , althoug h w e wil l sometime s refe r t o i t a s a  singl e 
braid. An element of Bn has many different projection s an d many differen t 
words that represent it . We would lik e to know when two different word s 
written ou t i n the letter s erf1,...., cr^ 1 represent th e same braid . We have 
already see n on e rul e tha t give s equivalenc e betwee n words , namely , w e 
can add o r delete u{ 071 or a J1 -cr,- from a  word. The next exercise gives us a 
second rule that we can apply. 

Exercise 5.26  Usin g a  picture , sho w tha t th e tw o braids a f a, - + 1 cr z and 
o-j +1 &i &i +1 are equivalent . 

The firs t rul e i s a  certain kin d o f Typ e I I Reidemeister mov e tha t w e 
can appl y t o th e brai d projection . Thi s secon d rul e i s a  kin d o f Typ e II I 
Reidemeister mov e tha t w e ca n appl y t o th e brai d projection . Ther e i s a 
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third rul e tha t w e ca n apply , but i t doe s no t com e fro m th e Reidemeiste r 
moves. If a braid contain s cr z CT; , where \i  -  j \ >  1 , then we can switch th e 
order of cr 2 an d cr ;, replacing aza; in our word with cr ;<xz. See Figure 5.45. 

11X1111 lll l 
Will M 

Ml II 
a b 

Figure 5.45 (a ) Switching cr z and o y when \i  —  ; | >  1 . (b) No suc h switc h 
when \i  - j \ =  1 . 

Two words itf j an d w 2 represen t th e sam e braid i f an d onl y i f we ca n 
get from the one word to the other by a sequence of these three operations. 
For instance , W\  =  cri(72 (J4loW2(J4 a n d ^ 2 =  ^^i^i  represen t th e sam e 
five-string brai d sinc e we ca n ge t from th e first  word t o the secon d wor d 
by the following se t of applications of the three rules. 

Rule 3 Rul e 3 

W\ —  O ,iO,20'4~1(Jl0"20"4 ~~ * ClO^CTj^CTiO^O ^ ~~" * ^ l ^ 0 " ? 1 ° r 4 c r l c r 2 

Rule 1  Rul e 2 

—> CT;iO"20"ia 2 "" * (J 2(J\(J21J2= w 2 

Exercise 5.27  Sho w tha t th e tw o word s W\  =  cr 2cria2a1a51a4 an d w 2 = 
cr20-3ai(T31or4 represent the same five-string braid, up to equivalence. 

Exercise 5.28  Fin d a  sequenc e o f thes e thre e equivalenc e move s tha t 
gives the Type III Reidemeister move depicted in Figure 5.46. 

Figure 5.46  A  Reidemeiste r move on a three-string braid . 
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In fact , w e ar e intereste d i n knowin g eve n mor e tha n whic h word s 
represent th e same braid . To make braids usefu l fo r kno t an d lin k theory , 
we woul d lik e t o b e abl e t o determin e whe n th e closure s o f tw o braid s 
represent th e sam e oriente d link . Let' s sa y tha t tw o braid s ar e Marko v 
equivalent i f thei r closure s yiel d th e sam e oriente d link . Jus t a s w e sa w 
that the three Reidemeister moves gave all equivalences between differen t 
projections o f th e sam e link , w e woul d lik e t o hav e a  se t o f move s o n 
braids that give all equivalences on the corresponding closed braids. 

Remarkably enough, in a 1935 paper, A. A. Markov outlined a  proof of 
the theorem now known as Markov's theorem. It says that two braids are 
Markov equivalen t i f an d onl y i f the y ar e relate d throug h a  sequenc e o f 
the three operations tha t we have already seen , which ar e operations tha t 
obviously giv e u s bac k th e sam e ope n braid , an d tw o additiona l opera -
tions. Th e firs t ne w operatio n i s calle d conjugation . O n th e wor d fo r a 
braid, conjugatio n i s the operatio n o f multiplyin g th e wor d a t th e begin -
ning by o y and a t th e en d b y vj l. O r w e coul d multipl y a t th e beginnin g 
by <JJ 1 and a t th e en d b y or ;. Geometrically, thi s ha s th e effec t show n i n 
Figure 5.47. 

| Brai d m 
Figure 5.47 Conjugatio n b y o\. 

It's prett y eas y t o se e tha t conjugatio n doe s no t chang e th e oriente d 
link corresponding to the closed braid. (I n fact, i t corresponds t o a Type II 
Reidemeister move on the link projection.) Notice that the need for a t least 
one more operation i s clear, since none of the operations so far chang e the 
number o f strings in the corresponding braid . However , it' s easy to com e 
up with two closed-braid representation s of the same link that do not have 
the sam e numbe r o f strings . Th e nex t operation , calle d stabilization , 
remedies thi s problem. Here , we add o r delet e a  loop in the close d braid . 
In terms of the word describing a braid, this operation takes a word w  cor-
responding t o a n n-strin g brai d an d replace s i t wit h th e wor d wcr n or 
wun

l, eac h o f whic h correspond s t o an n  - f 1-strin g braid. W e also allo w 
the inverse operation , wher e a  word o f th e form wcr n o r w<j~ l is replace d 
with jus t th e wor d w,  assumin g w  doe s no t contai n th e letter s a n o r a" 1 
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within i t (Figur e 5.48) . The resulting wor d w  then correspond s t o a  brai d 
with one less string. 

1 1 
1 Brai d 

w 1 *~* l 
1 II 

Braid 1 
w I I 

X 
OR BraicH 

WGn 

^ j ? 
n 
WGn 

Figure 5.48 Addin g or deleting loops. 

As is apparent fro m th e figure, th e oriented lin k corresponding t o th e 
closed brai d remain s unchange d b y eithe r o f thes e operations . (Not e 
that the operations correspon d t o a  Type I Reidemeister mov e o n the lin k 
projection.) Wha t i s surprisin g i s tha t th e tw o operation s o f conjugatio n 
and stabilization , togethe r wit h th e thre e operation s mentione d previ -
ously, suffice t o get us from an y one closed-braid representatio n o f an ori -
ented lin k t o an y othe r closed-brai d representatio n o f th e sam e oriente d 
link. We will not go through the proof because it is quite difficult. [ A proof 
appears in (Birman, 1976). ] However, let' s try our hand a t a  particular ex -
ample. 

In Figur e 5.49 , we se e tw o closed-brai d representative s o f th e figure -
eight knot . Hence , there mus t b e a  sequenc e o f thes e Markov move s (to -
gether with the three equivalence moves for a  given open braid) tha t tak e 
us from th e first braid to the second braid. A possible sequence appears i n 
Figure 5.50. 

Figure 5.49 Tw o closed braids giving the figure-eight knot . 
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Figure 5.50 A  sequenc e o f Marko v move s t o ge t fro m on e brai d t o th e 
other. 

Exercise 5.29  Fin d a  sequenc e o f Marko v move s tha t demonstrat e th e 
equivalence of the two closed braids in Figure 5.51. 

Figure 5.51 Fin d the Markov moves from one braid to the other . 

Recently, braids have been used t o find a  new solutio n t o the age-ol d 
question o f kno t theory , "Ho w d o yo u recogniz e th e unknot? " Joan Bir -
man and Michael Hirsch devise an algorithm tha t allows one to start with 
an arbitrar y projection , tur n i t into a  closed braid , an d the n us e tool s de -
veloped b y Joan Birman an d Willia m Menasco t o determin e i f tha t brai d 
could be the boundary o f a  disk, as it must be if i t is the trivia l knot. (See 
Birman, Hirsch, 1998.) 

5 . 5 Almos t Alternating Knots 

In a  paper I  co-authored wit h seve n student s (Adam s e t al , 1992), we in -
troduced th e concep t o f a n almos t alternatin g knot . W e knew tha t man y 
results wer e know n fo r alternatin g knots , an d ou r hop e wa s tha t a  kno t 
which i s "close " t o bein g alternatin g woul d hav e man y o f thos e sam e 
properties. 

We call a projection o f a  link almos t alternatin g i f i t has an almos t al -
ternating projection , an d i f i t does not have a n alternating projection . Fo r 
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instance, the 819 knot in Figure 5.52 is an almost alternating knot since it is 
known to be nonalternating ( a not at all obvious fact), but it has the almost 
alternating projection pictured . 

Figure 5.52 Th e 819 knot is almost alternating . 

Exercise 5.30  Sho w tha t th e knots 8 2o and 8 2i, shown i n Figure 5.53 , are 
almost alternating . (I t is known tha t they are not alternating knots , so 
you may assume that. ) 

^20 v ^ °2 1 

Figure 5.53 Sho w that these knots are almost alternating . 

Exercise 5.31  Sho w tha t al l of th e nonalternating nine-crossin g knot s i n 
Table 1.1 at the end of the book are almost alternating . 

In fact , o f th e 39 3 nonalternating knot s an d link s o f eleve n o r fewe r 
crossings, al l bu t a t mos t thre e ar e almos t alternating . I n (Adam s e t al , 
1992) we showe d thi s was tru e fo r al l but five , three knots and tw o links . 
Then in 1999, H. Goda, M. Hirasawa and R. Yamamoto found almos t alter -
nating projections fo r one each of the remaining knots and links . So, of the 
nonalternating knot s and links of 11 or fewer crossings , there are only two 
knots and one link which may not be almost alternating . 

G© Unsolved Question 

Either sho w tha t th e two knots shown i n Figure 5.54 are almost alter -
nating (b y finding a  projection tha t is almost alternating) o r prove tha t 
they are not. 



Types of Knots 14 1 

Figure 5.54 Tw o knots that could be almost alternating . 

How d o w e sho w tha t al l but thre e o f th e nonalternatin g knot s o f 1 1 
or fewe r crossing s ar e almos t alternating ? Joh n Conwa y use d hi s nota -
tion (whic h w e discusse d i n Sectio n 2.4 ) i n orde r t o lis t al l knot s o f 
11 o r fewe r crossings . I n particular , h e liste d th e nonalternatin g ones . 
Since then , i t ha s bee n prove d tha t thes e knot s ar e definitel y no t alter -
nating. I n Exercis e 2.15 , yo u showe d tha t a n algebrai c kno t tha t con -
tains no negative signs in its Conway notation is in fact an alternating knot . 

Exercise 5.32  Sho w tha t a n algebrai c lin k tha t ha s exactl y on e nega -
tive sig n i n it s Conwa y notatio n ha s a n almos t alternatin g pro -
jection. 

The result from workin g Exercise 5.32 immediately tell s us that al l but 
17 of the nonalternating knot s in Conway's lis t of 11-crossing prime knot s 
are almos t alternating . Simila r trick s allo w u s t o finis h of f th e remainin g 
knots in the list with only three exceptions. 

Okay, so we are generally agreed that there are lots of almost alternating 
knots. I f w e ca n prov e an y theorem s abou t almos t alternatin g knots , w e 
know tha t our results will apply to a lot of knots. We won't be wasting ou r 
time. W e als o kno w tha t ther e ar e a  lo t o f result s know n fo r alternatin g 
knots (in fact, we will see some of them in the next chapter). The idea here is 
to try to generalize those results so they apply to almost alternating knots. 

An amazin g arra y o f knot s an d link s hav e almos t alternatin g projec -
tions. In fact, the unknot has an almost alternating projection (Figur e 5.55). 
Even more amazing is the fact that every alternating knot or link has an al-
most alternating projection. We can simply perform a  Type II Reidemeister 
move t o a n alternatin g projectio n t o obtai n a n almos t alternatin g projec -
tion (Figure 5.56). 

® 
Figure 5.55 A n almost alternating projection of the unknot . 
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Figure 5.56 Alternatin g knots have almost alternating projections . 

In the summer of 1990, six students and I proved tha t a prime almost ah 
ternating knot is  either a torus knot or a hyperbolic knot.  Therefore, sinc e w e 
discussed i n Section 5.2 the fact tha t all knots fall into one of the three cat-
egories o f torus , satellite, or hyperbolic knots , it immediately follow s tha t 
no satellite knot can ever be an almost alternating knot. However, this the-
orem does not extend to links. 

This theorem wa s a  direc t extensio n o f th e previousl y know n fac t fo r 
alternating links, namely that a prime alternating link is either a torus link 
or a hyperbolic link [see (Menasco, 1984)]. In fact, the only torus links that 
are alternatin g ar e th e closure s o f th e two-strin g braids , s o jus t abou t 
every prime alternating link is hyperbolic (Figure 5.57). 

(2D c© O O -
Figure 5.57 Th e onl y alternatin g toru s link s ar e th e closure s o f th e two -
string braids. 

c& ^Unsolved Question 
Which torus knots are almost alternating knots? The (2 , ^)-torus knot s 
are closure s o f th e two-strin g braid s an d ar e therefor e al l alternatin g 
knots. Both the (3 , 4) and (3 , 5)-torus knots are almost alternatin g (th e 
(3, 4)-torus knot is the 829 knot, which we have seen to be almost alter -
nating). We conjecture tha t these are the only almost alternating toru s 
knots. 

Given an almost alternating projection, we can always complicate it by 
a "tongu e move/ ' a s in Figure 5.58. We just push a  part of the link up ove r 
the nonalternating crossing . The result i s a new almos t alternating projec -
tion with two more crossings. 
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Alternating out here 

Figure 5.58 A  tongu e move. 

Alternating out here 

^QJnsofaed Question 

Determine exactly which almost alternating projections are projection s 
of the unknot. Figure 5.59 shows one such projection o f the unknot . 

Figure 5.59 Ther e may b e other almos t alternatin g projection s o f th e un -
knot. 

c^^Jnsohed Question 

When doe s th e projectio n o f a n almos t alternatin g lin k represen t a 
splittable link ? A  connecte d alternatin g projectio n o f a  lin k i s neve r 
splittable. This was first  prove d b y Rober t Auman n i n 1956 . There are 
projections o f almos t alternatin g link s tha t ar e splittable . For instance , 
projections such as in Figure 5.60 are splittable. 

[ML) W\MJ 
/ X \ 
V3V 

Alt ou t here 

Figure 5.60 Thes e almost alternating links are splittable. 

Alt. ou t here -
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What we would like is a complete list of all phenomena tha t can occur 
in th e almos t alternatin g projection s o f splittabl e links . The n w e coul d 
look a t such a  projection an d immediatel y tel l if the link was splittabl e o r 
not. We might conjecture tha t a "reduced" almost alternating projection of 
a link is splittable if and onl y if it is obviously so (that is to say i t consist s 
of a  projection tha t ca n be nontrivially separate d b y a  circle in the projec -
tion plane tha t misses the link). The question i s to decide what "reduced " 
means here. 

We ca n als o tak e thi s ide a o f almos t alternatin g link s an d exten d it . 
Define a n m-almos t alternatin g kno t t o b e a  kno t tha t ha s a  projectio n 
where m  crossing changes would mak e the projection alternating , and th e 
knot ha s n o projectio n tha t coul d b e mad e alternatin g i n fewe r crossin g 
changes. We then consider alternating knots to be 0-almost alternating an d 
almost alternatin g knot s t o b e one-almos t alternating . A n exampl e o f a 
two-almost alternatin g knot i s the following Whitehea d doubl e o f the tre-
foil. It is not alternating o r almost alternating because i t is a satellite knot . 
In Figure 5.61, we display a projection that is two-almost alternating . 

Figure 5.61 Tw o projections of a Whitehead double of the trefoil . 

Exercise 5.33  Sho w that every knot is m-almost alternating for some m. 

Exercise 5.34  Sho w that if a knot has an m-almost alternating projection , 
then it has an (m + l)-almos t alternating projection . 

Exercise 5.35  Sho w tha t i f a  kno t K  ha s a  projectio n wit h n  crossings , 
then it is m-almost alternating for some m < n/2 . 

We have now divided al l knots into separate categories, depending o n 
their value of m. This number m measures how far a  knot is from being al-
ternating. I t i s simila r t o th e unknottin g numbe r i n tha t th e unknottin g 
number i s the leas t numbe r o f crossin g change s necessar y i n an y projec -
tion t o make th e kno t int o the unknot . Th e unknotting numbe r measure s 
how fa r a  kno t i s from bein g th e unknot . I n som e sense , these tw o mea -
surements, the almost alternating number and the unknotting number , are 
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the two extremes. The alternating knot is "the most complicated" knot w e 
can create by changing crossings in a projection, and th e trivial knot is the 
simplest knot we can create by changing crossings in a projection. 

(^(Unsolped Question 

Find a  relation between th e unknotting numbe r an d th e almos t alter -
nating number. Note that Bleiler and Nakanishi's example from Chap -
ter 3  (Figure s 3. 7 an d 3.8 ) show s tha t a  singl e kno t nee d no t realiz e 
its unknottin g numbe r (tw o i n thi s case ) an d it s almos t alternatin g 
number (zer o in this case) in the same projection . 

One ca n exten d th e notion o f a n almos t alternatin g kno t stil l further . 
(Adams, 1992) . Instead o f projectin g a  kno t ont o a  plane , we projec t ou r 
knot ont o a  torus . Le t T  be a n unknotte d toru s i n space . Let K  be a  kno t 
that ca n b e projecte d ont o th e toru s s o tha t th e projectio n i s alternating , 
when viewed from outsid e (or inside) the torus. We also require that every 
closed curve on the torus that doesn' t bound a  disk on the torus intersect s 
the projection. Then we say that K is a toroidally alternating knot. 

For example, Figure 5.62 shows a knot on the torus T that is toroidally 
alternating. Obviously , i t i s in an alternatin g projectio n o n th e torus . I t i s 
not quit e s o obviou s tha t ever y close d curv e o n th e toru s tha t doesn' t 
bound a  dis k o n th e toru s intersect s th e projection . Bu t notice tha t i f w e 
treat the crossings as vertices, so that the projection o f the knot becomes a 
graph o n th e torus , an d the n i f w e remov e th e grap h fro m th e torus , 
all o f th e remainin g region s ar e disks . An y close d curv e o n th e toru s 
that doesn't intersect the projection must lie in one of these disks. But then 
it wil l boun d a  dis k o n th e torus . Hence , thi s i s a  toroidall y alternatin g 
knot. 

Figure 5.62 A  toroidall y alternating knot . 

Exercise 5.36  Sho w tha t th e trivia l kno t i s toroidall y alternating . (Th e 
hard par t i s findin g a  projectio n suc h tha t th e close d curve s o n th e 
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torus tha t don' t bound disk s on the torus intersec t th e projection. Se e 
the preceding paragraph. ) 

Exercise 5.37  Dra w your own nontrivial toroidally alternating knot . 

Exercise 5.38  Sho w tha t an y almos t alternatin g kno t i s toroidall y alter -
nating. (Hint:  Put th e almos t alternatin g projectio n o n th e torus , an d 
push the funny crossin g through to the other side of the torus.) 

Exercise 5.39*  Sho w that any alternating knot is toroidally alternating . 

In fact, it turns out that toroidally alternating knots behave similarly to 
alternating an d almos t alternatin g knots . In particular, a  prime toroidall y 
alternating kno t i s either a  torus kno t o r a  hyperbolic knot . [Se e (Adams , 
1992).] I n a  pape r fro m 1995 , th e Japanes e mathematicia n Chuichir o 
Hayashi independentl y cam e up wit h an d examine d th e idea o f alternat -
ing knot s o n tor i an d highe r genu s surfaces . Sinc e thi s ide a o f toroidall y 
alternating knots is relatively new, it will be a  while before w e know ho w 
useful i t is. In the meantime, think about ways to generalize it . 



Polynomials 

6.1 Th e Bracket Polynomial and the Jones Polynomial 

In thi s chapter , w e tal k abou t on e o f th e mos t successfu l an d interestin g 
ways to tell knots apart. To each knot, we associate a polynomial. We com-
pute th e polynomia l fro m a  projection o f th e knot , but an y tw o differen t 
projections of the same knot yield the same polynomial. So the polynomia l 
is an invariant of the knot. 

If we have tw o pictures o f tw o knot s an d th e computed polynomial s 
are different , tha t tell s us immediately tha t th e tw o knot s have t o be dis -
tinct. For instance, we show tha t fo r on e of the polynomials tha t we com -
pute [whic h we denote by V(t)]  the unknot ha s polynomial 1  while the 5i 
knot has polynomial V(t)  =  r1 -  r 2 +  2t~ 3 -  r 4 +  r 5 -  r 6 (Figur e 6.1). 
Therefore, the unknot an d th e 62 knot ar e distinct, a fact tha t we have no t 
been abl e to prove unti l now. Note also that by a  polynomial, we mean a 
Laurent polynomial , whic h ca n have both positiv e an d negativ e power s 
off. 
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O (J) 
V(0 =  1  V(f ) =  *  -1 -  t  "2 +  It  " 3 -  f  -4 + t  "5 -  f  "6 

Figure 6.1 Polynomial s of the unknot and the 82 knot. 

Before w e introduc e an y o f th e polynomials , let' s tak e a  loo k a t th e 
history o f polynomial invariant s fo r knot s and links . The first polynomia l 
associated t o knots and link s was du e t o J. Alexander i n about 1928 . This 
polynomial invarian t wa s very good a t distinguishing between knot s an d 
links. Mathematician s utilize d th e Alexande r polynomia l t o distinguis h 
knots and link s for th e next 58 years. In 1969 , John Conway foun d a  wa y 
to calculate the Alexander polynomial of a link using a so-called skein re-
lation. This is an equation that relates the polynomial of a link to the poly-
nomial o f link s obtaine d b y changin g th e crossing s i n a  projection o f th e 
original link. We will see that skein relations form the basis of much that is 
to follow. 

In 1984 , Vaughan Jones , a mathematician fro m Ne w Zealand , discov -
ered a  new polynomia l fo r knot s an d links . The polynomia l cam e ou t o f 
work h e wa s doin g o n operato r algebras , a n are a o f mathematic s previ -
ously unrelated t o knot theory . He happened t o notice that a  relation tha t 
came u p i n operato r algebra s looke d ver y muc h lik e a  relatio n tha t oc -
curred i n kno t theory . This led him t o the discovery o f a  new polynomia l 
for knots . 

Jones's discover y generate d immens e excitemen t amon g kno t theo -
rists. Many kno t theorist s starte d workin g o n polynomials . Fou r month s 
after Jone s announced hi s new polynomial, the discovery o f the HOMFLY 
polynomial wa s announced . Th e nam e HOMFL Y come s fro m th e first 
letters of the names of the discoverers Hoste, Ocneau, Millett, Freyd, Lick-
orish, an d Yetter . Amazingl y enough , thi s sam e polynomia l wa s dis -
covered b y thes e peopl e whil e the y worke d i n fou r differen t inde -
pendent groups . ( A pai r o f Polis h mathematician s name d Przytyck i an d 
Traczyk als o develope d th e sam e polynomia l independently , bu t thei r 
work didn' t arriv e in the mail unti l severa l months later. ) Since then, nu -
merous othe r polynomial s hav e been discovered , a  few o f which we wil l 
discuss. 

We start wit h a  discussio n o f th e Jones polynomia l a s understood b y 
Louis Kauffman, a  mathematician a t the University o f Illinois in Chicago. 
In order to define th e Jones polynomial, we firs t develop a  polynomial as -
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sociated t o knot s tha t i s calle d th e bracke t polynomial . I n ou r develop -
ment o f th e bracket polynomial , w e tak e th e approac h tha t a  mathemati -
cian would take if he or she were trying to discover a polynomial that wa s 
an invarian t fo r knot s and links . Although i t does not appea r tha t way a t 
the start, ultimately we obtain a Laurent polynomial of a single variable A. 

Let's suppose that we are trying to create this polynomial invariant fo r 
knots and links , and tha t we have a few requirement s fo r th e polynomial . 
First of all , we would lik e the polynomial o f the trivial kno t to be 1 . If w e 
use th e notation <K>  t o denote the bracket polynomia l o f a  knot X, then 
our first rule becomes: 

Rulel: < 0 > =  1 

Second, we want a  method fo r obtainin g the bracket polynomia l o f a  link 
in terms of the bracket polynomials o f simpler links. We use the followin g 
skein relation. Given a crossing in our link projection, we split it open ver -
tically and horizontally , in orde r t o obtain tw o new lin k projections , eac h 
of which ha s one fewer crossing . We make the bracket polynomia l o f ou r 
link projection a  linear combination o f the bracket polynomials of our tw o 
new link projections, where we have not yet decided on the coefficients, s o 
we just call them A and B. 

Rule 2: <X > =  A <) (> +  B <X> 
<X> =  A <X> +  B <) (> 

The secon d equatio n her e i s just th e firs t equation , bu t looke d a t fro m a 
perpendicular view . If you bend your neck so that your head i s horizonta l 
and loo k at the first tangl e in the second equation , i t will appear th e sam e 
as the first tangl e in the first  equation. Applying the first equatio n in Rul e 
2 to this tangle gives us exactly the second equation , so we don' t actuall y 
consider thes e tw o equation s a s distinc t rules . Finally , w e woul d lik e a 
rule for adding in a trivial component t o a link (the result of which will al-
ways be a split link). So we will say: 

Rule 3: < L U  0> =  C  <L> 

Each time we add in an extra trivial component that is not tangled up wit h 
the original link L, we just multiply the entire polynomial by C. As with A 
and B , we consider C a variable in the polynomial, for the time being. 

The most important criterion for our polynomial is that it be an invari-
ant fo r links . That i s t o say , the calculatio n o f th e polynomia l canno t de -
pend o n th e particula r projectio n tha t w e star t with . It  must  be  unchanged 
by the Reidemeister moves.  Well, let's se e wha t happen s t o ou r polynomia l 
when we apply the Reidemeister moves . We'll begin with a  Type II Reide-
meister move. We want < j [ > =  < ) (> (se e Figure 6.2). 
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< ) > =  A<X> +  B<][> 

= A(A<si> +  B<X>) +  B(A<H> + B<X>) 
= A(A< X> +  BC< X>) +  B(A< ) (> +  B< X>) 
= (A2 + ABC + B2)<X> +  BA<)(> ±  <)( > 

Figure 6.2 Effec t on bracket polynomial of Type II move. 

In orde r tha t th e polynomia l b e unchange d b y thi s move , w e ar e 
forced t o make B  = A - 1 , s o that the coefficient i n front o f the vertical tan -
gle is one. But that's okay. We weren't committed to having a B in the final 
polynomial anyway . Once we hav e replace d B  by A - 1 , i t i s apparent tha t 
we also need A 2 +  C + A~2 =  0, so that the coefficient i n front o f the hori-
zontal tangle i s zero. This means we should mak e C  = - A 2 -  A~ 2. Then , 
the bracke t polynomia l wil l b e unchange d b y a  Typ e I I Reidemeiste r 
move. Hence , fro m no w on , ou r thre e rule s fo r computin g th e bracke t 
polynomial become: 

Rulel: < 0 > =  1 

Rule 2: <  X> =  A < ) (> + A"1 < X > 
< X > =  A < X > + A - * < ) ( > 

Rule 3: < L U  0> =  (-A 2 -  A~ 2)<L> 

Note that our polynomial now has a single remaining variable A. 
Now, let' s se e wha t effec t th e thir d Reidemeiste r mov e ha s o n 

the polynomia l (Figur e 6.3) . Thus , Typ e II I Reidemeiste r move s hav e 
no effec t o n th e polynomial . Onc e w e hav e fixed  i t s o tha t th e Typ e I I 
moves leav e th e polynomia l unchanged , th e Typ e II I mov e come s fo r 
free. 

(Now, apply the fact that Type II 
v > v _ . . - \ _ / move s don't change the bracket 

< ' X X >  =  A  < X >  +  A " 1 <  p  <^ > polynomial ) 

= A < ^> +  A" 1 < ) j (> =  < - X > 

Figure 63 Effec t on bracket polynomial of Type III move. 
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Before w e discus s th e Typ e I  Reidemeiste r move , let' s d o a  coupl e 
of quic k calculation s wit h ou r polynomial . Firs t w e jus t us e Rule s 1 
and 3  t o calculat e th e polynomia l fo r th e usua l projectio n o f th e trivia l 
link o f tw o components . B y Rul e 3 , where w e le t L  be th e unknot , w e 
have 

< O U O > =  -  (A" 2 +  A 2) < 0 > =  -  (A 2 + A- 2)l 

the last equality coming from Rule 1. 

Exercise 6.1  Wha t woul d th e bracket polynomia l o f th e usual projectio n 
of the trivial link of n components be? 

Let's try computing the bracket polynomia l o f a  projection o f the sim -
plest nontrivial link on two components, the Hopf link . This time, we wil l 
use all three rules. 

<G2)> =A<C£»+A" 1<GD> 
= A (A<(o)> +  A"1 <GQ» +  A"1 (A<C£) > + A"1 <G0 >) 
= A  (A(-(A2 +  A"2)) +  A" 1 (1)) + A" 1 (A(l) - f A" 1 (-(A2 +  A~ 2))) 

= - A 4 -  A" 4 

Exercise 6.2  Fin d th e bracket polynomia l fo r th e projection o f th e trefoi l 
knot, shown in Figure 6.4. 

Figure 6 A Fin d the bracket polynomial . 

We obviousl y save d th e bes t fo r last . Let' s se e wha t happen s t o th e 
polynomial when we apply a  Type I Reidemeister mov e (Figur e 6.5) . This 
looks bad.  The polynomial has been changed by a  Type I move. Our poly -
nomial does depend o n what projection o f the knot we have. But don't des-
pair, maybe we can fix the problem. 
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<15~> =  A<~&~> + A~1<1S~> 

= A{-A 2-A-2)<-^-> +  A~ 1<-v-> 

= - A 3 < > 

<~xr> = A<ny> + A- I<-^-> 

- A<  >  +  A-H-A 2-A~2)< > 

= -A-*< — > 

Figure 6.5 Effec t o n bracket polynomial of Type I move. 

Let's giv e a n orientatio n t o ou r kno t o r lin k projectio n L . A t ever y 
crossing o f th e projection , w e have eithe r a  •+ • 1 or - 1 , a s we sa w in Sec-
tion 1.4 (Figure 6.6). We call the sum of all these + l s an d - I s th e writhe of 
the oriente d lin k projectio n L  and denot e i t w(L).  (This is also sometime s 
called th e twist  of th e projection.) Thus , for instance , we can calculate th e 
writhe of the oriented link projection shown in Figure 6.7. 

V 
A 

a b 
Figure 6.6 (a ) +1 crossing, (b) -1 crossing . 

+1 - 1 

Figure 6.7 w(L)  = + 4 - 3 =  1 . 

Exercise 6.3  Calculat e the writhe of the oriented link projection in Figure 
6.8. 

V A 
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Figure 6.8 Determin e the writhe of this link projection . 

Exercise 6A  Sho w tha t th e writhe o f a  link projection i s invariant unde r 
Reidemeister moves II and III. 

Notice that Reidemeister move I always changes the writhe by ±1 . We 
are now goin g to define a  new polynomial called the X polynomial. I t is a 
polynomial of oriented links and it is defined t o be 

X(L) =  (-A 3yw(L) <L> 

Since both w{L)  and <L > ar e unaffected b y moves I I and III , X(L) is unaf-
fected by moves II and III. 

What happens t o X(L) when we d o a  Reidemeister mov e o f Typ e I  to 
L? Suppose firs t w e ha d a  stran d a s i n Figur e 6. 9 an d w e too k ou t th e 
twist. Then w(U) =  w(L)  +1, so 

X(L') =  ( -A 3 ) -^L ' )<L'> 
= (-A 3)-{W{L)+1) <V> 
= (-A 3)-^+V ((-A) 3<L>) 
= (-A 3)~W^<L> =  X(L) 

V L 

Figure 6.9 Effec t o n X(L) of Type I move. 

Thus, X(L) is unaffected b y thi s Type I  Reidemeister move . Similarly , i t is 
unaffected b y th e othe r versio n o f a  Type I  move. Therefore,  X(L)  is  an in-
variant for knots  and links. It does not depen d o n the particular projection , 
but rathe r depend s onl y o n th e kno t itself . A s a n example , conside r th e 
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link O  O . A s we previousl y computed , < 0 0 > = -A 2 -  A~ 2. Sinc e th e 
writhe of this link is 0, we have that X(0 0 )= -A 2 -  A~ 2. Thi s result is in-
dependent o f the projection o f the link . We could tak e a  really nasty pro -
jection of this link, like the one in Figure 6.10. If we calculated th e X poly-
nomial fo r thi s projectio n (no t somethin g tha t I  a m recommendin g yo u 
do), w e woul d fin d tha t th e answe r wa s exactl y th e same , namel y —A 2 

-A~2. 

Figure 6.10 A  nasty projection of O O. 

Exercise 6.5  Comput e X(L) for each of the following oriente d links. What 
happens t o X(L) if we chang e th e orientatio n o n on e o r bot h compo -
nents of the links? 

Figure 6.11 Comput e X(L). 

Exercise 6.6*  Le t L be a  split link consisting o f the union o f two links La 

and L 2 separated by a sphere. Determine how the X polynomial of L is 
related to the X polynomials of Lr and L2. 

The Jone s polynomia l i s obtaine d fro m th e X  polynomial b y replacin g 
each A by H^ 4. 

Exercise 6.7  Us e th e solutio n t o Exercis e 6. 5 t o writ e th e Jone s polyno -
mial of the trefoil knot . 

Figure 6.12 Determin e the Jones polynomial. 
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c& (Unsolved Question 1 
Does the Jones polynomial distinguis h ever y othe r kno t fro m th e un -
knot? Tha t i s t o say , is there a  nontrivial kno t wit h Jone s polynomia l 
equal t o 1 ? No on e ha s ye t foun d suc h a  knot , bu t n o on e ca n prov e 
such a knot doesn't exist. This is an important question . 

c&QUnsolved Question 2 
Vaughan Jones has proved that the Jones polynomial of an (m, n)-torus 
knot is f(*-i)(»-i)/2(i -  t w+1 -  t n+l +  t m + n) / ( l -  t 2). The only know n 
proof, however , relie s o n algebra s an d i s relativel y difficult . Fin d a 
simple proof o f this fact. (Mayb e relate the Jones polynomial o f an (m, 
n)-torus knot to the Jones polynomial of a simpler torus knot. ) 

The Jone s polynomia l ca n b e show n t o satisf y a  skei n relatio n o f it s 
own. Let L+f L_ , and L0 be three oriented link projections tha t are identical 
except where they appear as in Figure 6.13. 

X 
L+ L_  L0 

Figure 6.13 Thre e link projections that are almost identical . 

Exercise 6,8  Us e the skein relation o f the bracket polynomial i n orde r t o 
show tha t th e Jones polynomial s o f th e thre e link s i n Figur e 6.1 3 ar e 
related through the equation: 

t^ViU) -  tV(L_)  +  ( r 1 / 2 -  t 1/2)V(Lo) =  0 

This was the original skein relation that Vaughan Jones recognized t o hold 
for the Jones polynomial. We utilize it in Section 6.3. 

G.2 Polynomial s of Alternating Knots 

We would lik e t o hav e a  secon d wa y t o thin k abou t th e bracke t polyno -
mial. We focus o n Rul e 3  for it s computation . Fou r region s o f th e projec -
tion plan e com e togethe r a t a  crossing . W e label tw o o f the m wit h a n A 
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and tw o o f the m wit h a  B  by th e followin g simpl e rule . Rotate th e over -
strand counterclockwise , passing over two of the regions. Label these tw o 
regions wit h a n A  an d th e remainin g tw o region s wit h a  B , as i n Figur e 
6.14. 

a b 

Figure 6.14 (a ) Labeling a crossing, (b) Labeling a projection. 

In Rule 3 for calculating the bracket polynomial, we split open a  cross-
ing (Figure 6.15a) in two different ways . When that crossing is labeled, the 
first splittin g open s a  channe l betwee n th e tw o region s labele d A  a t th e 
crossing. We call this an A-split (Figur e 6.15b). The second splitting open s 
a channel between the two regions labeled B  at the crossing. We call this a 
B-split (Figure 6.15c). 

Figure 6.15 (a ) Crossing, (b) A-split. (c) B-split. 

Suppose L  is a  lin k i n a  projectio n o f n  crossings . Rul e 3  allow s u s 
to determin e th e bracke t polynomia l o f L  using th e bracke t polynomial s 
for tw o link s L\  an d L 2, eac h o f whic h ha s on e fewe r crossin g tha n L . 
The link s L x an d L 2 ar e obtaine d b y splittin g a  particula r crossin g i n 
the projectio n o f L  as a n A-spli t an d the n a s a  B-split . Sinc e w e ca n us e 
Rule 3  t o determin e th e bracke t polynomial s o f eac h o f L\  an d L 2 i n 
terms of the bracket polynomials for a  pair of links, each of which has on e 
fewer crossing , th e bracke t polynomia l o f L  depends no w o n fou r links , 
each o f whic h ha s tw o fewe r crossing s tha n L . Continuin g i n a  simila r 
manner, w e eventuall y hav e th e bracket polynomia l fo r L  in terms o f th e 
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bracket polynomial s fo r 2 n links , al l o f whic h hav e no  crossings. Eac h of 
these n  links simply comes from making a choice of an A-split or B-split a t 
each of the crossings in the projection o f L. Since there are n crossings, and 
we have two choices of how t o split each crossing, there will be exactly 2" 
links. 

We call a choice of how t o spli t al l of the n  crossings in the projectio n 
of L  a  state . Th e bracke t polynomia l o f L  the n depend s o n th e brac -
ket polynomial s fo r al l o f th e possibl e state s o f th e projectio n o f L . 
Given a  particula r stat e o f L , wha t i s th e bracke t polynomia l fo r th e 
corresponding lin k L ' tha t thi s stat e turn s L  into ? Th e lin k L ' ha s n o 
crossings. Hence , 1 / mus t b e a  se t o f nonoverlappin g unknotte d loop s 
in th e plane . W e wil l le t \S\  be th e numbe r o f loop s i n L \ The n b y 
Exercise 6.1 , we kno w tha t th e bracke t polynomia l o f 1 / i s simpl y (-A 2 

-A-i)\s\~\ 
But what facto r i s this polynomial multiplied b y when w e ad d i t int o 

the bracket polynomial o f the origina l link? Each time we spli t a t a  cross-
ing, the polynomials o f th e tw o resultan t link s were multiplie d b y eithe r 
an A or an A"1, depending on whether the split was an A-split or a B-split. 
So th e polynomia l o f 1 / i s multiplie d b y A a^A~h^s\ wher e a(S)  i s th e 
number o f A-splits in S and b(S)  is the number o f B-split s in S. Hence, the 
total contributio n t o th e bracke t polynomia l b y th e stat e S  i s A a^A~b^ 
(-A2 —  A"2)lsl_1. Fo r example , th e particula r stat e o f th e trefoi l kno t 
shown i n Figure 6.16 contributes A1 A' 1 t o the bracket polynomial o f thi s 
projection of the trefoil knot . 

Figure 6.16 On e state of this projection of the trefoil . 

The bracket polynomial of the projection o f the link L will now be sim-
ply the sum over al l of the possible states of these contributions. We write 
this as 

<L> =  I sA
a^A~b(s\-A2 -A- 2)\s\- (6.1) 

This point o f view has some advantages. In particular, i f we want t o com-
pute th e bracket polynomia l o f a  given projection o f L, we can simply lis t 
all of the links obtained b y splitting al l of the crossings o f I  i n every pos-
sible combinatio n an d the n comput e th e contributio n t o th e polynomia l 



158 Th e Knot Book 

of eac h term . A s an example , let' s recomput e th e bracket polynomia l of 
the trefoi l projectio n i n Figure 6.16 . Since there ar e three crossing s i n the 
projection, there will be 23 = 8  states. For each of the eight states, we have 
to compute \S\,  whic h w e do by simply countin g ho w many circle s ther e 
are in the corresponding link (Figure 6.17). 

<@ <@ @ <@ <§ <@ <© <@ 
|S| = 3 |S| = 2 |S| = 2 |S| = 2 |S| = 1 |S| = 1 \S\  = 1 |S| = 2 

Figure 6.17 Computin g the bracket polynomial for this projection of the 
trefoil knot . 

Hence, 

<K> = A^A\~A2-A-2f-1 +  A^-^-A^A-2)2'1 +  A 2A-\-A2-A-2)2-1 

+ A2A-\-A2-A-2)2-1 +  AlA~2{-A2-A-2)1-1 +  A lA-2{-A2~A'2)1-1 

+ A lA-2(-A2-A-2)1-1 +  A QA-\-A2-A-2)2~l 

= A 3(-A2-A~2)2 +  3A(~A 2-A~2) +  3A~l +  A-\-A 2-A~2) 
= A 7~A3-A~5 

Exercise 6.9  Comput e th e bracket polynomia l fo r thi s projectio n o f the 
figure-eight kno t using Equation (6.1) (see Figure 6.18). 

cp 
Figure 6.18 Th e bracket polynomial . 

We have define d a n alternating kno t to be any knot tha t has a projec-
tion such tha t i f you traverse the knot in a particular direction , you alter -
nately pass over and then under crossings , one after th e other. We call the 
projection an alternating projection. We will call an alternating projection re-
duced if there are no unnecessary crossing s in the projection, a s in Figure 
6.19. Not e tha t i f w e eve r ha d a n unreduce d alternatin g projection , w e 
could simplif y i t to a reduced alternatin g projection, thereb y lowering the 
number of crossings in the projection. But if an alternating projection is re-
duced, there is no obvious way to lower the number of crossings. This fac t 
formed th e basis for two conjectures datin g back to the last century. 
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Figure 6.19 Unreduce d alternating projections . 

c ^ Conjecture  1 

Two reduced alternatin g projection s o f th e sam e kno t hav e th e sam e 
number o f crossings. 

c& Conjecture 2 

A reduce d alternatin g projectio n o f a  kno t ha s th e leas t numbe r o f 
crossings for any projection of that knot . 

Both o f thes e conjecture s withstoo d th e concerte d effort s o f numer -
ous mathematicians , bu t neithe r on e coul d withstan d attac k b y th e ne w 
polynomials. Bot h wer e show n t o b e tru e b y Loui s Kauffman , Morwe n 
Thistlethwaite, an d Kuni o Murasug i i n 1986 . Together , thes e conjecture s 
imply tha t w e ca n determin e th e crossin g numbe r fo r an y alternatin g 
knot. We simply take an alternating projection an d simplif y i t until it is re-
duced. Sinc e al l reduce d alternatin g projection s fo r thi s kno t hav e th e 
same number o f crossings , and sinc e the least number o f crossings occur s 
in a  reduce d alternatin g projection , th e leas t numbe r o f crossing s is  th e 
number of crossings in this projection . 

We will prov e th e firs t conjecture ; th e secon d on e i s a  bit mor e diffi -
cult, but not outrageously so . We refer you to (Kauffman, 1988 ) for a  proof 
of th e second . Let' s begin wit h a  definition . Th e spa n o f a  polynomia l i s 
the differenc e betwee n th e highes t powe r tha t occur s i n th e polynomia l 
and the lowest power tha t occurs in the polynomial. For instance, the span 
of the polynomia l 

A3-2A2+1-A1-7A-2 

is 3- (-2 ) =  5 . 
Let's loo k a t th e spa n o f th e bracke t polynomial . Eve n thoug h th e 

bracket polynomial i s not an invariant fo r knots , it is true tha t the span of 
the bracke t polynomia l i s an invariant . Tha t is , for a  give n kno t K,  if w e 
calculate the bracket polynomial from any  projection whatever of the knot, 
and then take the span, we will always get the same answer. Let's see why 
this is the case . Suppose tha t we have tw o differen t projection s P\  and P 2 

of th e kno t K . Then ther e i s a  serie s o f Reidemeiste r move s tha t tak e u s 

Alt. Alt. 
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from Pi  to P2. We have already seen that the Reidemeister move s of Types 
II and II I do no t chang e th e bracket polynomia l a t all , so they mus t bot h 
leave the span of the bracket polynomial unchanged . 

We do  know tha t Typ e I  Reidemeiste r move s ca n chang e th e bracke t 
polynomial. But what do they do to the span? We saw in Figure 6.5 that a 
Type I move multiplies the entire polynomial by A3 o r A"3. I f we multipl y 
by A 3, thi s increase s th e highes t powe r i n th e polynomia l b y 3  an d in -
creases th e lowes t powe r i n the polynomial by 3 . Hence th e differenc e o f 
those two, which give s the span , is unchanged. Similarly,  multiplying th e 
entire polynomial b y A~3 als o leaves the span unchanged . Thus , all thre e 
Reidemeister move s leave the span of the bracket polynomial unchanged . 
Thus, the span o f the bracket polynomial mus t be the same fo r al l projec-
tions of the knot K,  and th e span of the bracket polynomial i s an invariant 
of the knot. 

We now prove the lemma that is the key to proving Conjecture 1 . 

Lemma I f K  ha s a  reduce d alternatin g projectio n o f n  crossings , the n 
span (<JK>) =  4n . 

Proof. W e know that the span of the bracket polynomial of K doesn't 
depend o n the projection of the knot that we use, so we might as well 
use the reduced alternating projection given to us in the statement of 
the lemma. Since the span of the bracket polynomial is simply the 
difference betwee n the highest power that occurs in the bracket 
polynomial and the lowest power that occurs, we look at each of these 
two quantities in turn. 

First, let's figure out what the highest power will be in the bracket 
polynomial. Each state contributes a term of the form A a^A~b^s\—A2 

—A~2)lsl_1. If we expand this out, the highest power of A occurring 
in this term will be Aa(s)A~&(S)(A2)lsl_1. Among all the states we there-
fore want to find the one that has the highest value of a(S) — b(\S\)  + 
2(\S\ —  1) . That highest value will be the highest power of A tha t oc-
curs in the bracket polynomial . 

In order to make a(S) - b(S)  + 2(|S | - 1 ) as large as possible, we 
want to pick a state where \S\ and a(S) are large but b(S)  is small. For 
\S | to be large, we need there to be many disjoint circles in the link 
corresponding to S. For a(S) to be large and b(S)  to be small, we wan t 
as many of the splits as possible to be A-splits, and consequently, as 
few of the splits as possible to be B-splits. Let's try taking all A-splits 
and no B-splits. Since we have n crossings, this means a(S) = n and 
b(S) = 0. What happens to IS |? Since the knot is alternating, when we 
place A's an d B's around a  crossing, we see that the vertices in any 
region of the projection are either all labeled with A's o r all labeled 
with B's. Let's shade the A regions gray while leaving the B regions 
white (Figure 6.20). 
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wy 
Figure 6.20 Shad e the A regions gray while leaving the B regions white. 

What happens when we open all of the A-channels? The gray 
waters flood the projection, leaving only a set of white islands in the 
middle of the gray lake. How many circles are there in the resulting 
link? Each circle is either the boundary of an island or the boundary of 
the lake (if the outermost region is white). Thus, if W is the number of 
white regions in the original projection, including possibly the outer 
region, then \S\ =  W . Therefore, the highest power of A correspondin g 
to this particular state is a(S) - b(S)  + 2(|S | - 1 ) =n +  2(W  -1) . We 
claim that every other state has a highest power that is lower than this. 
Why? 

Any other state has some B-splits. We show that if we have a state 
Sj and we go to a state S2 by changing one A~split to a B-split, the 
highest power cannot go up. The highest power in the term 
corresponding to Si is a(S\) -  b(Si)  + 2(|Si | — 1) . Then the highest 
power of the term corresponding to S2 is of the form (fl(Si ) —  1 ) — 
(b(Si) + 1 ) + 2(|S2 | - 1 ) since we have decreased the number of 
A-splits by one and increased the number o f B splits by one. So the 
question remaining is how different |S 2| can be from |Si| . But S2 differs 
from S i in only one split. Either that change in split increases the 
number of circles by one or it decreases the number of circles by one. 
Hence |S 2| =  |Si | ± 1 . Thus the highest power of the term 
corresponding to S2 is a(Si) -  b(S x) — 2 + 2((|Si|  ± 1 ) - 1) . This is 
certainly no greater than the highest term corresponding to Si, as we 
wanted to show. 

Thus, any time we change an A-split to a B-split, we do not 
increase the highest power. Since every state can be obtained from th e 
all-A-split state by a sequence of such change^, no other state has a 
higher power than the all-A~split state. In fact, it's not hard to see that 
the other states have highest powers that are strictly less than the 
highest power in the all-A-split state. 

Exercise 6.10  Sho w tha t th e highes t powe r o f A  tha t occur s i n a n all-A -
split state is strictly greater than the highest power o f A tha t occurs in 
a state with exactly one B~split. {Hint: Use the fact that the projection i s 
reduced and alternating. ) 
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Therefore, the highest power tha t occurs in the bracket polynomia l 
for K  is in fact n +  2( W — 1) . By a similar argument, we can also show 
that the lowest power tha t occurs is ~n  ~  2( D — 1) , where D is the 
number of darkened regions . This lowest power occurs in the term of 
the polynomial coming from th e all-B-split state. We therefore hav e 
that span(<iO) =  highes t power —  lowes t power =  n  +  2( W — 1 ) — 
( - n -  2( D -  1) ) =  In  +  2(W + D  -  2) . But W + D  is the total number 
of regions in the projection, and the total number of regions is n +  2. 
(See the next exercise.) Hence span(<JO) =  2 n +  2n =  4n , as we set 
out to prove. • 

Exercise 6.11  Sho w tha t th e number o f regions R  in a  connected kno t o r 
link projection i s always tw o mor e tha n th e numbe r o f crossing s (in -
cluding the region outside the knot). (Hint:  Either use the fac t tha t th e 
Euler characteristi c o f a  disk is always 1  or simply draw a  knot, keep-
ing count of the number o f regions created whenever you create a new 
crossing.) 

Exercise 6.12  A s a simple corollary to the lemma, show that if K has a re-
duced alternatin g projectio n o f n  crossings , then th e spa n o f it s Jones 
polynomial i s exactly n.  (A pretty amazing fact , which when take n to-
gether with Conjecture 2 , says that the crossing number o f an alternat -
ing knot is exactly the span of its Jones polynomial.) 

We are now almost done with the proof o f Conjecture 1 . 

Theorem Tw o reduced alternatin g projections o f the same knot have th e 
same number of crossings. 

Proof. I f the first projection has n crossings, then by the lemma, the 
span of the bracket polynomial of that projection is 4n. But since the 
span of the bracket polynomial is an invariant of the knot, it doesn' t 
change when we change projections. So the span of the bracket 
polynomial corresponding to the second projection is also 4n. But the 
lemma then implies that the number of crossings in the second 
projection is also n. Hence both projections have the same number of 
crossings. D 

In 1983 , Willia m Menasc o prove d tha t i f Ki#K 2 i s a n alternatin g 
knot, the n i t appear s composit e i n an y alternatin g projection . Tha t i s t o 
say, ther e i s a  circl e i n th e projectio n plan e tha t intersect s th e kno t 
twice, suc h tha t th e facto r knot s o n eithe r sid e o f th e circl e ar e them -
selves alternating . I n particular , K!#K 2 mus t loo k somethin g lik e Figur e 
6.21. Togethe r wit h Conjectur e 2 , Menasco' s resul t ha s th e followin g 
corollary. 
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Figure 6.21 A  composit e alternating knot . 

Corollary c(K t#K2) =  c(K t) +  c(K 2) for KX#K2 an alternating knot . 

Proof. Choos e a reduced alternating projection fo r Ki#K2. By 
Menasco's result, Ki appears as part of this projection. Hence, we have 
a reduced alternating projection o f Kt. Conjectur e 2  then says that the 
least number of crossings for K\  is the number appearing in this 
picture. Since K2 is alternating, Conjecture 2  also says that its least 
number of crossings is the number appearing in this picture. Since 
Kt#K2 is alternating, its least number of crossings also occurs in this 
picture. Hence c(Ki#K2) = c(K{) + c(K 2). • 

As w e mentione d i n Sectio n 4.1 , it i s stil l a n ope n conjectur e tha t 
c(K1#K2) =  c(K{)  +  c(K 2) holds fo r al l knots . Alternatin g knot s ar e th e 
first majo r categor y o f knot s fo r whic h thi s conjecture ha s been show n t o 
be true . Ther e i s a  large r clas s o f knots , calle d adequate  knots,  tha t con -
tains al l o f th e alternatin g knots , and fo r whic h th e argument s tha t wer e 
applied t o alternatin g knot s ca n b e extended . I n particular , w e ca n 
define a n adequat e projectio n o f a  kno t an d the n sho w tha t a  reduce d 
adequate projectio n o f a  kno t ha s th e minima l crossin g numbe r o f tha t 
knot. 

One can also extend these questions to the broader class of graphs em -
bedded i n space . Any kno t o r lin k ca n b e though t o f a s a  graph , wher e 
each componen t o f th e kno t o r lin k consist s o f a  singl e verte x togethe r 
with a  singl e edg e tha t begin s an d end s a t th e singl e vertex . W e don' t 
think of the edge as being straight, but rather allow it to curve and knot i n 
space. More generally , any graph consistin g o f a  set of vertices connecte d 
by edges can be embedded i n space . The edges can twist , curve and kno t 
in space. The vertices can have any number o f edges coming out o f them . 

We can define a n alternating graph analogously to an alternating knot , 
although i t is a little too technical to state here. In (Adams et al, 1999), four 
students and I  showed tha t for a n alternating graph with an even numbe r 
of edge s hittin g eac h vertex , th e minima l crossin g numbe r i s realized i n 
any reduce d alternatin g projectio n suc h tha t ever y edg e ha s a  crossing , 
just as occurs for knots and links . But this is false if we allow vertices with 
an odd number o f edges. 
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c^(Unsolved Questions 
What othe r knot s beside s alternatin g an d adequat e knot s hav e mini -
mal crossin g numbe r i n a  particula r typ e o f projection ? A s we men -
tioned in Section 5.1, Kunio Murasugi proved tha t the least number of 
crossings for a torus knot occurs in one of the two standard projection s 
for a  torus kno t (dependin g o n whic h o f p  and q  is larger) . Are ther e 
other categories o f knots for which i t holds? Is it true c(Ki#K 2) = c(Ki) 
+ c(K 2) if Ki and K 2 are both torus knots? What i f one is an alternatin g 
knot and the other is a torus knot? 

A conjectur e fo r alternatin g knot s tha t ha s bee n aroun d sinc e th e 
days o f Pete r Guthri e Tai t (1831-1901 ) i n th e 1890 s i s th e Tai t Flypin g 
Conjecture. Thi s i s a  conjectur e abou t projection s o f knot s wher e w e 
project t o th e spher e (a s w e di d i n Sectio n 2.2) , rathe r tha n t o a  plane . 
The conjectur e the n say s tha t i f w e hav e tw o reduce d alternatin g pro -
jections o f th e sam e knot , the y ar e equivalen t o n th e spher e i f an d onl y 
if the y ar e relate d throug h a  sequenc e o f move s calle d flypes. A  flyp e 
is a  180 ° rotatio n o f a  tangle , a s i n Figur e 6.22 . Althoug h w e hav e 
drawn th e flype  a s i f i t i s occurrin g o n a  plane , thin k o f i t a s occurrin g 
on th e surfac e o f a  larg e sphere , s o tha t t o u s th e spher e look s lik e a 
plane. 

Figure 6.22 Flypes . 

Exercise 6.13  Fin d the sequence of flypes tha t get us from th e first projec -
tion in Figure 6.23 to the second projection . 

Figure 6.23 Fin d the sequence of flypes . 
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If true , the Tai t Flyping Conjectur e allow s u s t o dra w al l possible re -
duced alternatin g projections o f a  given alternatin g knot . They are al l ob-
tained by doing al l the possible flypes o n any one projection. Thi s process 
generates a t mos t a  finit e numbe r o f projections . Th e conjectur e als o im -
plies that unlike the process of using Reidemeister move s to get from on e 
projection t o another , flype s allo w u s t o ge t fro m an y on e reduce d alter -
nating projection o f a  knot t o any othe r reduce d alternatin g projectio n o f 
the same knot without ever increasing the number of crossings. 

In 1990 , William Menasc o (Stat e Universit y o f Ne w Yor k a t Buffalo ) 
and Morwen Thistlethwaite (Universit y of Tennessee) together proved th e 
Tait Flypin g Conjecture . Th e proo f use s a  blend o f geometri c technique s 
and the new polynomials . 

6,3 Th e Alexander and HOMFLY Polynomials 

The ver y firs t polynomia l fo r knot s wa s th e Alexande r polynomial , in -
vented back in 1928. It is a polynomial for oriented links , and we describ e 
it s o tha t it s variabl e i s t.  A t th e tim e o f it s invention , i t wa s define d i n 
terms o f relativel y abstrac t mathematica l concept s beyon d th e scop e o f 
this book. I t wasn't unti l 196 9 that John Conway showed tha t the Alexan -
der polynomia l A  can be compute d usin g just tw o rules . The firs t rul e i s 
the usua l one , namel y tha t th e trivia l kno t ha s trivia l polynomia l equa l 
t o l . 

Rule 1: A  (O) = 1 . 

But a difference her e is that this holds true for any  projection o f the trivia l 
knot, not just the usual one. 

The second rul e i s similar t o the skein relation tha t we sa w was satis -
fied b y th e Jones polynomial i n Exercise 6.8. Again, we tak e three projec -
tions o f link s L +, L_, and L 0 such tha t the y ar e identica l excep t i n th e re -
gion depicted i n Figure 6.24. Then the polynomials of these three links are 
related through our second rule: 

X 
L+ L _ L Q 

Figure 6.24 Thre e links that are identical except at this crossing. 

Rule 2: A(L +) -  A(L_ ) +  (t 1/2 -  r 1 / 2 ) A(L 0) = 0 
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Although w e d o no t prov e i t here , these tw o rule s ar e enough t o en -
sure that the Alexander polynomial i s an invariant fo r knot s and links . In 
particular, thi s mean s tha t i f we ar e give n a  projection o f a  knot , w e ca n 
compute the Alexander polynomia l o f the knot i n any projection , an d w e 
will ge t th e sam e answer . W e do no t nee d t o kee p th e projection s froze n 
throughout th e calculation , a s we had t o do with th e bracket polynomial . 
For example , let's comput e th e Alexander polynomia l o f the trefoi l knot . 
Treating the trefoil knot as L+, with the circled crossing as the one that ap-
pears in Figure 6.24, we obtain 

A(<g)) -  A(<g » +  (t 1^ -  r " 2 ) A(<g » =  0 

where 

A((Q)) =  A(0 ) =  1 

and 

A( £>) -  A ( @)) + (fV 2 -  r ! / 2 ) A ( Q) =  0 

By Exercise 6.15, which follows , 

A( @j) =  0 , so A( @)) = -t 1/2 +  r 1 / 2 an d 

A((g)) =  (t1/2 -  r 1/2)2 + l =  t - l  +  r 1 

Exercise 6.14  Comput e th e Alexande r polynomia l o f th e figure-eigh t 
knot. 

Exercise 6.15  Sho w tha t the Alexander polynomia l o f a  splittable link i s 
always 0. (Hint: Picture the splittable link as L0.) 

Unlike th e Jones polynomial, there are known example s o f nontrivia l 
knots with Alexander polynomia l equa l to 1 . This is one of the disadvan -
tages o f th e Alexande r polynomial : I t canno t distinguis h al l knot s fro m 
the trivia l knot . Fo r instance , th e ( -3 , 5 , 7)-pretze l kno t ha s Alexande r 
polynomial 1  (Figure 6.25). 

ft) S P  9 

Figure 6.25 Th e (—3, 5, 7)-pretzel knot has Alexander polynomial 1. 
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One questio n tha t come s up i s whether o r not Rul e 2  always allow s 
us t o calculat e th e Alexande r polynomial . Whe n w e wer e calculatin g 
the bracke t polynomial , i t wa s alway s clea r tha t th e applicatio n o f th e 
skein relatio n t o a  crossin g resulte d i n tw o lin k projection s tha t wer e 
simpler tha n th e origina l lin k projection , sinc e the y eac h ha d fewe r 
crossings. Hence , w e kne w tha t th e proces s woul d eventuall y lea d t o 
a se t o f trivia l links , fo r whic h w e coul d calculat e th e polynomials . 
Here, i t i s les s clea r tha t w e ca n alway s expres s th e Alexande r polyno -
mial o f a  give n lin k i n term s o f th e Alexande r polynomial s o f tw o 
simpler links . 

You wil l remember , however , tha t whe n w e discusse d unknottin g 
number, we proved tha t any projection ca n be turned int o a  projection o f 
a trivia l lin k b y changin g som e subse t o f th e crossings . Therefore , sup -
pose w e hav e a  kno t o r lin k fo r whic h w e woul d lik e t o comput e th e 
Alexander polynomial . Give n a  particula r projection , w e coul d choos e a 
crossing, such that i t is one of the crossings tha t we would lik e to chang e 
in order to turn the projection into a trivial projection. Letting the origina l 
projection correspon d t o eithe r L + o r L_ , w e ca n us e th e skei n relatio n 
in order to obtain the polynomial of our original link in terms of the poly-
nomial o f a  lin k wit h a  projectio n wit h on e fewe r crossin g an d th e 
polynomial o f a  lin k wit h a  projectio n tha t i s on e crossin g close r t o th e 
trivial projection . Iteratin g thi s procedur e allow s u s t o obtai n th e poly -
nomial o f th e origina l lin k i n term s o f th e polynomial s o f a  se t o f trivia l 
links. 

This process o f repeatedly choosin g a  crossing, and the n applyin g th e 
skein relatio n t o obtain two simple r links , yields a  tree o f links calle d th e 
resolving tree. At the top is our origina l link; at the bottom, we find al l of 
the trivial links that result from repeatedl y applying the skein relation. For 
instance, here is a resolving tree for the trefoil knot (Figure 6.26). 

oo=((2) <2>=o 
Figure 6.26 Resolvin g tree for the trefoil knot . 

Exercise 6.16  Fin d a  resolving tree for the knot 63 (shown in Figure 6.27) . 
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Figure 6.27 A  6 3 knot. 

These resolvin g tree s ar e usefu l fo r th e calculatio n o f severa l o f th e 
new polynomials. Define the depth o f a resolving tree to be the number of 
levels o f link s in the tree , not includin g th e initia l leve l a t the top . So the 
resolving tree shown for the trefoil in Figure 6.26 has depth two. 

Define th e depth of a link L  to be the minimal depth for any resolving 
tree for that link. Here is an invariant for links that measures the complex-
ity o f th e calculatio n o f th e Alexande r polynomial . Let' s se e wha t i s 
known. Th e onl y link s o f dept h zer o ar e th e trivia l links . I t ha s bee n 
proved b y Bleile r an d Scharleman n tha t a  kno t o f dept h on e i s always a 
trivial knot , an d tha t th e link s o f dept h on e ar e al l Hop f links , possibl y 
with a  fe w extr a disentangle d trivia l component s adde d in . Th e link s of 
depth tw o have als o been classified , thi s time by Abigai l Thompson fro m 
the University of California a t Davis, working jointly with Martin Scharle-
mann. 

G^(Unsolved Problems 

1. Classif y th e links of depth n  for any n > 2. 

2. Sho w that there are only a finite number o f links with a given num-
ber of components and a given depth . 

Remember tha t th e Alexande r polynomia l wa s th e onl y polynomia l 
for ove r 5 0 years . Bu t onc e Vaughan Jone s discovere d th e Jone s polyno -
mial in 1984 , quite a  few mathematician s starte d t o look fo r a  polynomia l 
with two  variable s instea d o f one , a  polynomia l tha t woul d generaliz e 
both th e Jones polynomia l an d th e Alexande r polynomial . Th e first  suc h 
polynomial t o b e discovere d wa s th e HOMFL Y polynomial , whic h i s a 
two-variable Lauren t polynomial , th e variable s bein g m  and I . As a n ex -
ample, the oriented link in Figure 6.28 has HOMFLY polynomial 

p =  (_ / 3 _  / 5 ) m - l +  (2/ 3 -  / 5 _  / 7 ) m +  (_ Z3 +  J5) m3e 
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COCX D 

Figure 6.28 A  lin k with HOMFLY polynomial P. 

What are the rules for calculating the HOMFLY polynomial? 

Rule 1: P  (O) = 1 . 

As before, we want the unknot to have polynomial 1 . As in the case of th e 
Alexander polynomial, this holds true for any projection of the unknot . 

Rule 2: I f L+, L_, and L 0 are again three oriented link s that ar e identi -
cal except in the region that appears in Figure 6.24, then 

IP(L+) + r lP{L_) +  mP(L 0) = 0 

Notice ho w simila r thi s relationshi p i s t o both Rul e 2  for calculatin g th e 
Alexander polynomial and to the skein relation that we showed was satis-
fied by the Jones polynomial in Exercise 6.8. 

Let's us e thes e rule s t o calculat e th e HOMFL Y polynomials fo r som e 
links. In Figure 6.29, we see three links that are identical except a t the on e 
crossing, an d thu s for m a  tripl e o f link s L +, L_ , an d L 0. Hence, we hav e 
that IP(L +) +  l^PiLJ)  +  mP(L 0) =  0 . Bu t bot h L + an d L _ ar e simpl y 
slightly twisted pictures of the unknot. Hence P(L+) =  P(L_) = 1 , and there-
fore mP(Lo)  =  - ( / +  Z -1). Thus, we have shown that P(L0) = ~-m~ x{i + l" 1). 

oo oo oo 
U L_  L 0 

Figure 6.29 Thre e related links. 

Exercise 6.17  Comput e th e polynomial o f the link L_ in Figure 6.3 0 uti -
lizing the rules for th e HOMFLY polynomial togethe r with th e HOM-
FLY polynomial that we have already computed . 
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C(D (I D G D 
L+ L_  L0 

Figure 6.30 Comput e the HOMFLY polynomial of L_. 

Sxercise 6.18  Determin e the polynomial of the trefoil in Figure 6.31. 

Figure 6.31 Fin d the HOMFLY polynomial of the trefoil . 

Sxercise 6.19  Sho w tha t th e HOMFL Y polynomial o f a  knot i s identica l 
to th e HOMFL Y polynomia l o f th e sam e knot , but wit h th e opposit e 
orientation. 

This las t exercis e demonstrate s tha t w e nee d no t distinguis h be -
tween orientation s whe n w e ar e discussin g th e HOMFL Y polynomia l o f 
a knot . I f w e ar e dealin g wit h a  link , however , changin g som e bu t no t 
all o f th e orientation s o n th e component s ca n have a n effec t o n th e poly -
nomial. 

In general , w e can  alway s comput e th e HOMFL Y polynomia l o f a 
link. A s wit h th e Alexande r polynomial , al l tha t w e nee d i s a  resolv -
ing tre e i n orde r t o d o th e calculation . However , th e calculatio n ca n b e 
very slow . I n particular , mos t o f th e curren t compute r program s ar e 
effective fo r computin g th e polynomial s o f simpl e knot s an d links , bu t 
we wouldn' t wan t t o tr y the m o n a  100-crossin g projection . Eve n th e 
fastest computer s woul d tak e to o lon g t o d o th e computation . (Th e 
link would eventuall y reduc e t o 2100 links, none o f which have an y cross -
ings. Bu t 2 100 i s large r tha n th e estimate d numbe r o f particle s i n th e 
universe.) 

There i s a  compute r progra m writte n b y Hug h Morto n an d Hamis h 
Short that can be applied t o closed braids of nine or fewer string s and tha t 
can successfull y comput e th e polynomials o f knot s with severa l hundre d 
crossings. It utilizes a different algorithm . 

The HOMFL Y polynomia l ha s severa l ver y interestin g properties . 
For instance , suppos e L j U  L 2 i s th e so-calle d spli t unio n o f th e tw o 
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links L\  an d L 2. Thi s i s simpl y th e lin k obtaine d b y movin g £ 4 ove r 
near L 2, bu t no t overlappin g the m o r linkin g the m i n an y wa y (Figur e 
6.32). (I 4 an d L 2 ca n b e separate d b y a  sphere , s o th e resultin g lin k i s 
splittable.) Then P(L t U  L2) =  - ( / +  /- 1)m-1P(L1)P(L2). In particular, i f w e 
apply thi s unio n t o th e trivia l kno t o n tw o components , w e obtai n th e 
same HOMFL Y polynomia l tha t w e compute d usin g th e tw o rule s fo r 
the polynomial . W e won' t bothe r t o prov e thi s fact . Althoug h th e proo f 
is no t difficult , it' s a  littl e o n th e mess y side . Yo u migh t tr y t o 
prove thi s yourself , usin g th e rule s fo r calculatin g th e HOMFL Y polyno -
mial. 

c© CD 
Figure 6.32 Th e disjoint union of L4 and L2. 

exercise 6.20  (a ) Show that P(L U O) =  - ( / +  l^nT^L). 
(b)* Show that P{U U  L2) = - ( / +  r^m^PiL^P^). 

However, thi s equatio n doe s lea d t o a  second interestin g propert y o f 
the polynomial: 

PiUZLz) =  P(L!)P(L2) 

That's right , the polynomial o f the composition o f two links i s simply th e 
product o f th e polynomials o f the facto r links . This seems too good t o be 
true. For instance , the polynomia l o f th e composit e o f tw o trefoil s i s jus t 
(-2Z2 -  I 4 +  Z 2ra2)2 (Figure 6.33) , which i s the squar e o f th e polynomia l 
for the trefoil . 

m 
Figure 633 Thi s composite has polynomial (~2Z 2 —  Z 4 + l 2m2)2. 
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Another amazin g fact here is that we didn' t sa y how t o take the com -
position o f a  link . W e didn' t specif y whic h componen t o f th e firs t lin k 
should be connected u p t o which component o f the second link . In fact, i t 
doesn't matter . Al l thos e possibl y distinc t composit e link s wil l hav e th e 
same polynomia l (Figur e 6.34) . This i s ou r firs t exampl e o f link s tha t ar e 
certainly distinct , but tha t cannot be distinguished by the HOMFLY poly-
nomial. 

g^e @*e &s 
a b  c  d 

Figure 6.34 (a ) Lj. (b) L2. (c) First choice for Li#L2- (d) Second choice for 
L^#L2. 

Let's se e how t o prove th e formul a fo r P(Li#L 2) from th e formula fo r 
P(Li U  L2) . The composit e lin k Li#L 2 has a  projectio n tha t appear s a s i n 
Figure 6.35. Without cutting the strands to Ly let' s flip that part of the pro-
jection corresponding t o L2 in two differen t ways , to get th e two links L + 

and L_ . Note that both of these projections ar e still projections o f Li#L2* In 
addition, L0 is simply the disjoint union Z4 U L2 (Figure 6.36). 

Figure 6.35 A  projection for Li#L2. 

0x0 0x 0 0 0 
L+ L . t . 

Figure 6.36 Thre e related links. 

The second rule for calculation of the P polynomial then says 

IP{U#L2) + /-^(LjtLz) +  mPiU  U  L2) = 0 
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But we know that P{Li U L2) =  -(I  +  l- l)m~lP{Li)P{L2); henc e we have 

IP(L^L2) +  /-^(LaflLa) +  m(-(l  +  l-^m^PiL^P^)) =  0 

(/ +  l~ l)P(L,#L2) +  (-( / +  ri)P(La)P(L2) ) =  0 

P(La#L2) =  P(L 1)P(L2) 

This is an amazing rule . Remember back in Section 1. 2 when we sai d tha t 
composition of prime knots was analogous to multiplication of prime inte-
gers? Thi s rul e say s tha t th e polynomial s o f th e knot s behav e exactl y a s 
the integers do. The polynomial o f a composite knot factors int o the poly-
nomials of all of its factor knots . 

How goo d i s th e HOMFL Y polynomia l a t tellin g apar t knot s an d 
links? Bette r tha n eithe r th e Jone s polynomia l o r th e Alexande r polyno -
mial, since we wil l se e tha t both o f thos e ar e simpl y specia l case s o f thi s 
polynomial. Bu t w e hav e alread y see n example s o f link s tha t i t wil l no t 
distinguish, particularly th e links coming fro m differen t way s t o take th e 
composition o f tw o links . However , perhap s i t doe s bette r wit h knots . 
Maybe every distinct knot has a distinct HOMFLY polynomial and mayb e 
we could tell all knots apart simply by looking at their polynomials. 

We should be so lucky. The HOMFLY polynomial is not what i s called 
a complete invariant for knots . It cannot distinguish al l knots. In particu -
lar, a pair o f mutant knots (which we discussed i n Section 2.3) will alway s 
have the same HOMFLY polynomial (Figure 6.37). Mutants are big trouble 
in general . As we saw in Section 5.3, they cannot be distinguished b y hy -
perbolic volum e either . W e did se e tha t th e Kinoshita-Terasak a mutant s 
were distinguishable because their minimal genus Seifert surfaces had dif -
ferent genera , bu t thi s i s no t a  genera l techniqu e fo r distinguishin g mu -
tants. Many pairs of mutants have the same genus. 

Figure 6.37 Tw o mutant knots have the same polynomial. 

c&(Unsolved Question 1 
Find a  good way to distinguish between mutants. You want to find a n 



174 Th e Knot Book 

invariant fo r knot s tha t i s affected b y mutation . Mayb e th e followin g 
question gives us a possibility. 

c®(Unsolved Question  2 

Given a pair of mutant knots, is there always a choice of integers p and 
q such that the (p, g)-cable knots on each of the two mutant knots hav e 
distinct HOMFLY polynomials? 

How i s the HOMFLY polynomial related to the Jones polynomial? We 
simply replac e /  by it" 1 an d m  by i(t~ 1/2 -  t 1/2) i n th e HOMFL Y polyno -
mial. Here, i = J~l. Not e that the skein relation for th e HOMFLY polyno-
mial then becomes the skein relation for the Jones polynomial tha t we dis-
cussed in Exercise 6.8. For instance, we have seen in Exercise 6.18 that th e 
HOMFLY polynomial of the trefoil kno t is P(K) = - 2 / 2 - Z 4 + l 2m2. Substi-
tuting for m  and / , we have tha t 

V(K) = -2(ir1)2 -  (fr 1)4 + (irl)2(i(r1/2 - 11/2))2 

= ir2 -  r 4 +  r\rl -2  +  t) 
= -r4 + r3 + r1 

This is exactly the Jones polynomial tha t we computed earlie r fo r th e tre -
foil. 

Exercise 6.21  Sho w tha t th e substitutio n /  =  i  an d m  =  i{t l/1 -  t~ vl) 
turns th e HOMFL Y polynomia l int o th e Alexande r polynomia l (b y 
showing tha t the resulting polynomial obey s the rules for th e Alexan -
der polynomial) . Thus , the HOMFL Y polynomia l i s a  more powerfu l 
invariant tha n eithe r th e Jone s polynomia l o r th e Alexande r polyno -
mial. It carries their information withi n it. 

Finally, we mention that the HOMFLY polynomial can be very helpfu l 
in determinin g th e brai d inde x o f a  knot . Rober t William s an d Joh n 
Franks, and independentl y Hug h Morton , prove d tha t i f w e le t E  be th e 
largest exponen t o f I  in th e HOMFL Y polynomia l o f th e oriente d lin k L 
and e  the smalles t exponent o f / , then the braid inde x n  of the link L  satis-
fies the inequality 

n >^-^— '- +  1 

Amazingly enough , thi s inequality i s sharp fo r al l but five prime knots of 
10 or fewer crossing s (th e exceptions being 942/ 949,10132,1015o, and 10 156). 
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^(Unsolved Question 

Determine wha t i s specia l abou t thes e fiv e knots . Wh y ar e the y th e 
only prim e knot s o f 1 0 o r fewe r crossing s wit h brai d inde x strictl y 
greater than (E - e)/2  +  1? 

There ar e severa l othe r polynomial s tha t w e wil l no t discuss , each of 
which ha s it s ow n advantage s an d disadvantages . Se e th e reference s fo r 
readable articles that explore these other polynomials. 

Q.4 Amphicheiralit y 

A whil e back , w e define d th e notio n o f a n amphicheira l knot , namel y a 
knot suc h tha t i t i s ambient isotopi c t o it s mirror image . Tha t i s to say , a 
knot i s amphicheira l i f i t can be deforme d throug h spac e t o the kno t ob -
tained b y changing ever y crossing in the projection o f th e knot t o the op-
posite crossing . We also insis t tha t a n orientatio n o n th e kno t i s taken t o 
the correspondin g orientatio n o n th e mirro r imag e o f th e kno t unde r th e 
ambient isotopy. Let K* be the mirror image of K. 

Exercise 6.22  Sho w tha t th e bracket polynomia l o f K*  i s just the bracke t 
polynomial o f K  where th e variabl e A  i s replaced everywher e b y th e 
variable A'1. Sho w that the same is true for the X polynomial. 

If K is an amphicheiral knot, then K is in fact the same knot as K*m, they 
are simply in distinct projections. Hence, it must be the case that 

XK(A) =  XK*(A) 

[The notation X K(A) mean s the X polynomial o f K  with variable A.] How-
ever, Exercise 6.22 shows that 

XK(A) =  X K.(A~i) 

Thus, if K is an amphicheiral knot, it must be that 

XK(A) =  XK>(A-i) =  X K(A-i) 

Hence the polynomial o f an amphicheiral knot must be palindromic, that is 
to say, the coefficients mus t be the same backwards or forwards, where we 
list all of the coefficients, includin g all the zeros. 
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What abou t th e figure-eigh t knot ? W e showe d tha t th e figure-eigh t 
knot wa s amphicheira l i n Sectio n 1.3 , utilizin g th e Reidemeiste r moves . 
Therefore it s polynomial shoul d b e palindromic. In fact , it s polynomial i s 
A8 +  A4 -  3  + A~ 4 +  A"" 8, which is palindromic. Replacing every A by an 
A~~l gives us the same polynomial back again. 

On th e othe r hand , th e trefoi l kno t ha s polynomia l A 4 +  A 12 +  A 16. 
This polynomial i s not palindromic . I f we replac e ever y A by a n A" 1, w e 
get A~ 4+ A - 1 2 +  A -16 , whic h i s no t th e sam e polynomial . Hence , thi s 
shows tha t th e trefoi l kno t i s no t amphicheiral . The  trefoil knot is  distinct 
from its  mirror image. Thi s means tha t even though al l along we have been 
discussing th e trefoi l a s i f i t were a  singl e knot , i t i s actuall y tw o knots , 
one called the right-hand trefoil and the other called the left-hand trefoil (Fig-
ure 6.38) . I n fact , th e firs t proo f tha t th e left-han d an d right-han d trefoil s 
are distinc t wa s offere d b y Ma x Deh n (1878-1952 ) i n 1914 . However, h e 
didn't hav e kno t polynomial s t o wor k wit h then , s o hi s proo f wa s com -
pletely different . 

<@ <Q 
a b 

Figure 6.38 Th e left-hand trefoi l (a ) and the right-hand trefoi l (b ) are dis-
tinct. 

Let's look a t the implication s o f thi s discussio n fo r alternatin g knots . 
We have already seen that if K is an alternating knot in a reduced alternat -
ing projection of n crossings, then 

max deg<K> =  n  +  2(W - 1 ) 

and 

min deg<JO =  -n  -  2( D -  1 ) 
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Since X(K) =  (-A)~3W^<K>, w e have tha t 

max deg X(K) = n +  2(W - 1 ) - 3w(K) 

and 

min deg X(K) =  -n  -  2( D -  1 ) - 3w(K) 

But we have already seen that for an amphicheiral kno t 

XK(A) =  X^A- 1) 

In particular, this means tha t 

max deg X(K) =  -min de g X(K) 

So we obtai n the formul a 

n +  2( W - 1 ) - 3W(JK ) =  ~(-n  -  2( D - 1 ) - 3w(JK) ) 

This yields 3w(K) = W -  D. 
Hence, in orde r fo r a n alternating kno t t o be amphicheiral , i t must b e 

that the difference i n the number of white regions and darkened regions is 
exactly thre e time s th e writhe , an d thi s equalit y mus t b e satisfie d i n any 
reduced alternating projection . 

Exercise 6.23  Sho w tha t i f the absolute value o f the writhe in a  reduce d 
alternating projection o f an alternating knot is greater than or equal t o 
one third o f the numbers o f crossings in that projection, then the kno t 
cannot b e amphicheiral . (I n fact , Morwe n Thistlethwait e ha s prove d 
the stronger result, that if K is amphicheiral, w(K) =  0. ) 

Exercise 6.24  Exactl y one of the knots of six or seven crossings in the ap-
pendix table is amphicheiral. Determine which one it must be. 

In 1890, Peter Guthrie Tait made the following conjecture : 
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c& Conjecture 

If th e crossin g numbe r o f a  kno t K  i s odd , tha t kno t i s no t am -
phicheiral. 

The trefoil knot is an example of a knot for which the conjecture holds . 
The least number o f crossings fo r th e trefoi l i s three, an odd number , an d 
it is not amphicheiral . 

Exercise 6.25  Prov e th e precedin g conjectur e whe n i t i s restricted t o al -
ternating knots. 

The conjectur e tha t knot s wit h od d crossin g numbe r wer e no t am -
phicheriral wa s ope n fo r ove r 10 0 years . Bu t i n thei r lis t o f al l knot s 
through 1 6 crossings (Host e e t al , 1998 , references t o Chapte r 2) , the au -
thors cam e acros s a  15-crossin g kno t tha t wa s amphicheiral , effectivel y 
killing thi s longstandin g question . I n th e cas e o f links , Eric a Flapa n an d 
Chengzhi Lian g foun d severa l counterexample s t o thi s conjectur e abou t 
the same time. 

Since th e informatio n o f th e Jone s an d X  polynomial s i s embedde d 
within th e HOMFLY polynomial, i t should als o provide u s with informa -
tion about amphicheirality . 

Exercise 6.26  Sho w tha t th e HOMFL Y polynomia l o f K*  i s obtaine d 
by replacin g eac h I  in th e HOMFL Y polynomial o f K  with a n I' 1. Us e 
this fac t t o sho w tha t th e left-han d an d right-han d trefoi l knot s ar e 
distinct. 

Although surprisingl y effectiv e a t determining th e amphicheiralit y o f 
knots, the HOMFLY polynomial i s not infallible. For instance, the knot 942 

has HOMFLY polynomial 

P(942) = (-2Z~ 2 -  3  - 2/ 2) +  (l~ 2 + 4  +  I 2) m2 -  m 4 

Note tha t th e polynomia l i s unchange d whe n ever y I  i s replace d b y a n 
r1. Hence , P(942 ) =  P(942*) . However , ther e exist s a  "signature' " invar -
iant comin g ou t o f algebrai c topolog y tha t prove s tha t 9 42 i s no t 
amphicheiral. 
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c& (Unsolved Question 
Find a  complet e invarian t fo r amphicheiralit y Tha t i s t o say , find  a n 
invariant tha t will definitively determin e whether o r not a  knot is am-
phicheiral. 
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Biology, Chemistry, 

and Physics 

7.1 DN A 
As we mentioned i n Section 1.1 , much o f the initial interest in knot theor y 
was motivate d b y the possibilities o f application s t o chemistry . However , 
it wasn't unti l the 1980 s that application s t o chemistry were actually real -
ized. I n particular , w e star t b y discussin g application s o f kno t theor y t o 
DNA, beginning with some background . 

In the 1950s, it was realized tha t the genetic code appeared i n the dou -
ble heli x structur e o f DNA . Deoxyribonuclei c aci d (DNA ) i s a  molecul e 
that is formed b y pairs of long molecular strands that are bonded togethe r 
by ladde r rung s an d tha t spira l aroun d eac h other , forming th e so-calle d 
double helix. The molecular strands are made up of alternating sugars an d 
phosphates. Each sugar is bonded t o one of four bases , A =  Adenine , T = 
Thyamine, C =  Cytosine , and G  =  Guanin e (Figur e 7.1) . The rungs o f th e 
ladder ar e formed b y hydrogen bonding between pair s o f bases, where A 
always bond s t o T  and C  alway s bond s t o G . Not e tha t th e sequenc e o f 
bases as we move down on e strand i s then mimicked b y the other strand , 
except tha t th e A s an d T s have bee n exchange d an d th e C s and G s hav e 



182 Th e Knot Book 

been exchanged . Th e sequence o f As, Ts, Cs, and G s as we run dow n on e 
of th e strand s i s th e geneti c code , givin g a  blueprin t fo r life . Thes e 
molecules contai n o n th e orde r o f million s o f individua l atoms , al l o f 
which are packed into the tiny nucleus of a cell . In fact, i f the nucleus of a 
cell were the size of a  basketball, the DNA withi n i t would b e equivalen t 
to 200 kilometers o f fishing line . And it' s not a s if we carefully woun d th e 
fishing lin e up before w e stuffed i t into the basketball. It' s a tangled mess . 

A — c  C — A — T  A — G 
II I I \S I I I I i i \^ I I i i 
T — G G  T — A T  — C 

Figure 7.1 Th e DNA double helix. 

But the DNA has to be utilized i n order t o perform variou s biologica l 
functions, suc h as replication, transcription, and recombination . These ar e 
the processes of reproducing a  given DNA molecule , copying segments of 
DNA, and modifyin g DN A molecules , respectively . Al l three o f thes e ar e 
necessary fo r life . The knotting an d tanglin g in the DNA molecules mak e 
the performanc e o f thes e processe s difficult . I n orde r fo r thes e biologica l 
mechanisms to function, ther e must be some way of manipulating the tan-
gled masses of DNA molecules. 

Nature get s aroun d thi s proble m b y providin g enzyme s calle d topo -
isomerases. These enzyme s manipulat e th e DN A topologically . I n Figur e 
7.2 we see three of the possible actions the enzymes ca n take . However, a 
particular enzym e ma y hav e a  much mor e sophisticate d action . Conceiv -
ably, it could tak e two strands of DNA and replac e them with a  nontrivia l 
tangle. Onc e a  particula r enzym e ha s bee n isolated , biochemist s woul d 
like to determine ho w i t acts on the DNA. Since much o f th e DNA in th e 
cell is not circula r DNA, the enzyme could caus e a  knot to be formed i n a 
strand o f DNA , but becaus e th e two end s o f th e strand ar e free, th e kno t 
might slip off th e end of the DNA strand. The scientists would no t be able 
to se e wha t effec t th e enzym e ha s had . T o solve thi s problem , scientist s 
utilize circular DNA molecules . Letting the enzyme ac t on this DNA, they 
then examin e th e result . I f th e enzym e i s causing knotting , tha t knottin g 
will be captured on the circular DNA. 

X-X X-X X-K 
Figure 7.2 Thre e actions that enzymes can take on DNA. 
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In fact , circula r DN A occur s i n nature . I n th e earl y 1960s , it wa s dis -
covered tha t DN A i n a  certai n bacteriophag e appeare d a s a  singl e 
stranded rin g on the order o f 15,00 0 atoms. (By single stranded, we mea n 
that thi s type o f DNA i s not double stranded , but rathe r consist s o f a  sin -
gle strand o f alternatin g phosphate s an d sugars. ) Sinc e then, biochemist s 
have discovere d tha t bot h single-strande d cycli c DN A an d duple x (th e 
usual two-stranded doubl e helix) cyclic DNA are prevalent, appearing no t 
only in many bacteria an d viruse s but als o in the mitochondria o f huma n 
cells. More recently, biochemists have discovered ho w to artificially creat e 
cyclic DNA. It is to these synthetic molecules that they can then apply th e 
enzymes, in order to determine their effect . 

We focus on the duplex cyclic DNA. Each of the phosphates alon g th e 
ladder edge is bonded to two different suga r molecules. Each of the sugar s 
is bonded t o a base molecule, being one of the C, T, G, or A molecules, and 
also t o tw o phosphates , whic h occu r a t tw o differen t site s o n th e suga r 
molecule, calle d th e 3 ' an d th e 5 ' site s (Figur e 7.3) . A  singl e phosphat e 
will b e bonde d t o th e 3 ' sit e o f on e suga r an d t o th e 5 ' sit e o f anothe r 
sugar. Henc e w e ca n thin k o f a  phosphat e a s the connector , stickin g a  3 ' 
site o n on e suga r t o a  5 ' sit e o n a  secon d sugar . Thus , a  linea r stran d o f 
DNA will have two ends, one of which is a sugar with an open 3' site and 
one of which is a sugar with an open 5 ' site . This gives an orientation to a 
single strand o f DNA, determined by the convention that we start at the 5' 
end of the strand and head toward the 3' end . 

[5' end| 

O' 

I 

o 

O = P  — O  — C H ^O < g ^ ) 

OH H 

13' end| 

Figure 73 Two  sugar molecules and their bonds. 
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Interestingly enough , linea r duple x DN A ha s n o suc h orientation . I f 
an en d o f on e stran d ha s a n ope n 3 ' site , th e correspondin g en d o f th e 
parallel strand wil l have an open 5 ' site . In particular, each end o f the lin -
ear duple x DN A wil l have both a n ope n 3 ' an d a n ope n 5 ' site . The tw o 
strands are oppositely oriented , giving us no way to orient the duplex lin -
ear molecule (Figure 7.4). 

3' - A - A - C - G - T - 5 ' 
it ii ii it ii 

5 ' - T - ~ T - G - C ~ A - 3 * S ' - T - T - G - C - A - S ' 
• • 

Figure 7 A Linea r single-stran d DN A i s oriented , linea r duple x DN A i s 
not. 

For ou r considerations , ther e i s an eve n mor e importan t consequenc e 
to thes e sites . Namely, i f th e end s o f th e linea r duple x DN A ar e brough t 
together t o form a  cyclic duplex DN A molecule , the 3' site must be glue d 
to a  5 ' sit e and vic e versa. This forces eac h stran d o f th e DNA t o glue it s 
head to its own tail rather than to the tail of the other strand. Hence we get 
two linked strand s rathe r tha n a  single stran d runnin g aroun d twice . Pu t 
another way, there must be an even number o f half-twists i n the cyclic du-
plex DNA, when it is laid out flat in the plane. 

The geometry of cyclic duplex DNA is very interesting. It can be mod -
eled a s a ribbon i n three-space , with th e two end s o f th e ribbon glue d to -
gether (Figur e 7.5) . The tw o boundarie s o f th e ribbo n correspon d t o th e 
two edge s o f th e DN A ladder . Sinc e ther e mus t b e tw o distinc t edge s of 
the ribbon , w e kno w tha t th e ribbo n neve r take s th e for m o f a  Mobiu s 
band. The curve tha t runs along the center o f th e ribbon i s called th e axi s 
of the ribbon. Although i t doesn't model a  part of the molecule, it does tell 
ps ho w contorte d th e molecule i s in space . We can choos e an orientatio n 
on th e axi s an d the n giv e th e tw o boundarie s o f th e ribbo n orientation s 
that match it. 

Figure 7.5 A  ribbo n modeling cyclic duplex DNA . 



Biology, Chemistry, and Physics 18 5 

Let's loo k a t thes e ribbon s i n spac e i n more detail . Suppos e tha t w e 
have such a ribbon in space, but instead o f treating it as if it were made of 
rubber, w e assume tha t i t is fixed rigidl y i n space. We compute som e in-
variants tha t depen d o n thi s particula r placemen t i n space , an d tha t 
would vary if we did move the ribbon. First, we define the twist of the rib-
bon, denoted TwtR) . It measures how much th e ribbon twist s aroun d it s 
axis. When the axis lies flat i n the plane, without crossin g itself , the twis t 
of the ribbon is simply one-hal f o f the sum of the + ls and - I s occurrin g 
at the crossings between the axis and a particular one of the two link com-
ponents bounding the ribbon. It doesn't matte r whic h link component we 
use. We get the same answer with eithe r one. The + ls and - I s ar e deter-
mined b y the convention tha t we utilized i n Section 1. 4 and that appear s 
in Figure 7.6. 

When the axis is not flat i n the plane, we must defin e th e twist o f the 
ribbon mor e abstractly . It is the so-called integra l of the incremental twis t 
of th e ribbon abou t th e axis , integrated a s we traverse th e axi s once . (If 
you don' t kno w wha t a n integral is , you now have at least one good rea -
son t o tak e calculus. ) I t simpl y measure s ho w muc h th e ribbo n twist s 
about the axis from th e frame o f reference of the axis. It need not be an in-
teger. 

Next, we define th e writhe o f the ribbon, denoted Wr(jR) . It measure s 
how muc h the axis of the ribbon is contorted i n space. For any particula r 
projection o f the axis, define th e signed crossove r number to be the sum 
of al l the ± l s occurrin g a t crossings wher e th e axis crosse s itself . Notic e 
that we do not divide by 2, as we did for linking number . Again , we use 
the conventio n fro m Sectio n 1. 4 to decide whic h crossing s ar e + 1 cross -
ings and which are -1 crossings (Figure 7.6). 

Now, for the writhe o f the ribbon, we take th e average valu e o f the 
signed crossove r number , over ever y possible projection o f the axis. Keep 
in min d thoug h tha t th e axi s remain s fixe d i n space , s o whe n w e tal k 
about al l the possible projections o f the axis, we mean the planar picture s 
that would resul t as we looked a t the fixed axi s from al l possible vantag e 
points on a sphere that surrounds i t (Figure 7.7).  Such an average value is 

+1 - 1 

Figure 7.6 Conventio n for determining the writhe of a ribbon. 

A 
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determined b y utilizin g integrals . W e tak e th e integra l o f th e signe d 
crossover numbers , integrating over all vantage points on the unit sphere , 
and then divide by the integral of one, integrating over the unit sphere . 

f signed crossover number dA 
Average value =  —CL~—— n+ A 

_ J  signed crossover number dA 
~~ 4 T T 

since / dA  is just the surface area of the unit sphere . 

Figure 7.7 Lookin g at axis from al l possible vantage points. 

Note tha t i f the ribbon axi s lies in a  plane, the signed crossove r num -
ber i s 0  for al l projections excep t fo r thos e wher e ou r ey e i s in th e plane . 
These last projections do not have a well-defined crossin g number becaus e 
we ar e looking a t th e axi s edge on . Bu t we ignor e thes e projection s sinc e 
they form 0% of the total set of projections. (What percent of the surface of 
a spher e i s the equator? ) Henc e th e writh e o f th e ribbo n axi s would b e 0 
when it lies on a plane. 

It become s trickie r t o comput e th e writh e whe n th e axi s i s no t i n a 
plane, as some projections will have crossings and others will not. See Fig-
ure 7.8 , for instance . In order to compute the writhe of a particular ribbo n 
in space, we would nee d to have detailed equation s tha t described exactl y 
where the axis was. The writhe is also not necessarily an integer . 

Top view Fron t view 

Figure 7.8 Th e writh e o f thi s kno t i s difficult  t o compute . (Th e thicke r 
parts of the knot are closer to your eye than the thin parts. ) 
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Finally, we ca n trea t th e two boundaries o f th e ribbon a s component s 
of a  lin k an d the n comput e th e linkin g numbe r o f th e tw o components , 
denoting th e resul t b y Lk(R) . Remember th e linkin g numbe r i s just one -
half o f th e su m o f th e ± l s occurrin g a t th e crossing s betwee n th e tw o 
components. This las t invarian t doe s no t depen d o n th e particula r place -
ment o f the link in space. It would remai n th e same if we treated th e rib-
bon as if it were made of rubber, and isotoped i t to a different position . 

James White of UCLA, Brock Fuller of Caltech, and G . Calugareanu, a 
Czech mathematician , al l workin g independently , discovere d th e follow -
ing remarkable relation between these three invariants: 

Lk(R) = TwCR) + Wr(R) (8.1 ) 

In simple cases, we can use this equation t o find one of the invariants , 
knowing th e other two . For example, we se e the values o f these three in -
variants in the two cases shown in Figure 7.9. In Figure 7.9a, the axis of the 
ribbon lies flat in the plane, giving Wr(R) =  0 . The linking number is easily 
computed t o be +1 , and th e twist is then forced t o be + 1 by Equation 8.1. 
In Figure 7.9b, the ribbon doesn' t twis t around it s axis at all, giving Tw(R) 
= 0 . Since we can compute Lk(R) = +1 , it must that WrtR) =  +1 . 

Lk(R) = + 1 s  *  v  Lk(R ) = + 1 
Tw(K) = +1 (C^YX)]  Tw(R ) = ° 

Wr(R) = 0 ^ " ^ ^ - ^ W r ( R ) =  + 1 

a b 

Figure 73 Twist , writhe, and linking number . 

Equation 8.1 implies that if we have a ribbon tha t we isotope to a new 
position i n space , any chang e i n twis t ha s t o be exactl y balance d b y th e 
change in writhe, since the linking number is unchanged by the isotopy. In 
Figure 7.9, we see this effect. Thes e two ribbons are in fact isotopic , as you 
can easil y chec k wit h you r belt . Buckl e you r bel t togethe r wit h on e ful l 
twist i n i t (well , take i t off , first) . Now , se e i f yo u ca n plac e i t fla t i n th e 
plane like Figure 7.9b. Unless your bel t has a  lot of elastic in it , you won' t 
succeed, but you wil l see a projection o f i t that looks right. Your other op -
tion is to go buy a more elastic belt. 

In it s relaxed state , DNA twist s aroun d it s axi s a t a  rat e o f 10. 5 base 
pairs pe r helica l twist . This relaxed rat e o f twistin g i s caused b y th e wa y 
the sugars , phosphates , an d bas e pair s bond . Thus , a  cycli c duplex DN A 
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with exactl y 10 5 base pair s coul d li e flat  in th e plan e a s a  two-brai d lin k 
with 1W(10 = 10 , Lk(R) =  10 , and Wr(R) =  0  (Figure 7.10). 

G—A —T T — G — C — A — A A  —T 
II I I I IN/I I I I I I i i " / x 1 1 " 
C — T — A/ X A — c —  G — T — T T— A 

Figure 7.10 A  relaxed cyclic duplex DNA. 

However, sometimes a cyclic duplex DNA is more tightly twisted tha n 
10.5 base pair s pe r twist , havin g fewe r bas e pair s pe r twist , an d henc e 
twisting more over the same length of molecule. For example, suppose w e 
have a cyclic duplex DNA that has an axis in the plane, so Wr(R) =  0 . But 
now suppos e tha t bot h th e twis t an d th e linking number s hav e doubled , 
so that Tw(JR) = Lk(JR ) = 20 , while the number o f base pairs has remaine d 
at 105. Then we have 5.25 base pairs per twist . The DNA is uncomfortabl y 
overwound (Figur e 7.11) . Sinc e th e tota l numbe r o f bas e pair s i n th e 
molecule i s fixed , th e onl y optio n fo r th e DN A i s t o reduc e th e numbe r 
Tw(K) to 10 . Then there wil l be 10. 5 base pair s per twist . However , Equa -
tion 8. 1 say s tha t decreasin g TW(JR ) mus t caus e a n increas e i n Wr(R) . 
Hence, WrCR) must no w g o t o 10 . This means tha t th e axi s o f th e ribbo n 
will now become contorted i n space. This effect i s known as supercoiling . 

G T—A— G G—T— A A—C— C G 
n\^ii I I n Y i i i i I I V I I n  I I V I I 
C A—T— C C—A— T T—G— G C 

Figure 7.11 Overwoun d DNA . 

We are all familiar wit h supercoiling . I t is the same effect w e se e with 
the coile d cor d tha t attache s th e phon e receive r t o th e phon e box . Tha t 
cord like s to twist a t a  rate of about five  coil s per inch . In its relaxed stat e 
(when it' s not attached a t one end), it will lie flat, coiled at that rate . But if 
we hold bot h end s and star t t o add twist s t o the cord , i t remains straigh t 
only a s lon g a s we stretc h i t out . As soo n a s we le t i t go slac k whil e stil l 
holding th e ends , w e immediatel y se e i t g o t o a  supercoile d positio n 
(Figure 7.12) . Th e cor d get s twiste d u p wit h itself , it s axi s "writhing " 
through space . 
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Relaxed phone cord Supercoile d phone cord 
after adding twists 

Figure 7.12 Addin g twists to the phone line to create supercoiling. 

This phenomenon ha s interestin g implication s fo r biochemistry . Sup -
pose we have a cyclic duplex DNA molecule that is relaxed, lying with it s 
axis in a plane and twisting happily at 10.5 base pairs per twist. Suppose now 
that an enzyme comes along and nicks one of the two strands open, twist s 
it once around the other strand, and reglues the two ends together. Assum-
ing the axis still lies in a plane, we have increased each of Lk(jR) and TwCR) 
by one (Figure 7.13). One would expec t such a change to be virtually unno-
ticeable, since it happens at one point on the molecule, a localized effect . 

Figure 7.13 A n enzyme adds a full twist to a DNA molecule. 

However, now the molecule is too tightly wound t o be comfortable. So 
instead o f staying in the plane, it will decrease TwCR) by one and therefor e 
increase WrCR) by one . This means th e axis of the ribbon wil l tangle wit h 
itself. I t wil l n o longe r li e flat . Biochemist s ca n discer n suc h a  chang e i n 
the molecule. They can place the molecules in a gel and the n pass electric-
ity throug h th e ge l t o attrac t th e molecule s towar d a n electrode . Th e 
molecules wit h greate r supercoilin g ar e mor e compact , an d henc e mov e 
more quickl y throug h th e gel , allowin g thei r separatio n (Figur e 7.14) . 
Once the molecules have been separated , they can be examined unde r a n 
electron microscope . Usin g recentl y develope d techniques , th e DN A ca n 
be coated t o thicken it , making i t possible t o see the actua l crossing s an d 
tangling. I n Figur e 7.15 , we se e a  picture fro m a n electro n microscop e o f 
actual DNA. 
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6 ^ _ SB — 6 

Figure 7.14 Supercoile d molecules move faster through the gel. 

Figure 7.15  Knottin g i n DN A unde r a n electro n microscope . (Fro m 
Wasserman et al., 1985.) 

We now retur n t o the original question , which was how t o determin e 
the action of an enzyme on DNA. We discuss a particular type of action by 
an enzyme called site-specific recombination, which is a process whereb y 
an enzyme attaches to two specific site s on two strands of DNA, called re-
combination sites , each of which correspond s t o a particular sequenc e of 
base pair s tha t th e enzym e recognizes . Afte r linin g th e site s up , th e en -
zyme cut s th e tw o strand s ope n an d recombine s th e fou r end s i n som e 
manner. In Figure 7.16, we show one of the simplest actions. 

Figure 716 A  possibl e site-specific recombination . 
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When th e two strands are on two different molecules , it is hard t o de-
termine exactl y wha t operatio n ha s take n place . S o instea d biochemist s 
create a  single circula r DN A molecul e tha t contain s a  copy o f eac h o f th e 
two recombinatio n site s necessar y fo r th e reaction . Then , whe n th e en -
zyme acts on this molecule, the result can be analyzed to determine the ef -
fect o f th e enzyme . Sinc e a  recombinatio n sit e i s a  nonpalindromi c se -
quence o f bas e pairs , we ca n choos e a n orientatio n fo r th e site . When a 
pair of sites is utilized in an enzyme action, we pick the orientations of the 
two site s so that the y will match when th e enzyme pull s the two site s to-
gether. When both site s appear o n the same circular DNA molecule , these 
orientations ca n eithe r poin t i n th e sam e directio n a s w e travers e th e 
molecule, in which case we say that we have direct repeats, or their orien -
tations ca n poin t i n opposit e direction s a s we travers e th e molecule , thi s 
case bein g know n a s inverte d repeat s (Figur e 7.17) . Befor e th e reactio n 
takes place, we cal l the DNA molecule the substrate. During the reaction , 
either th e enzym e o r rando m therma l motio n line s th e tw o site s u p s o 
that thei r orientation s match . Dependin g o n th e actio n o f th e enzyme , 
and o n whethe r w e hav e direc t repeat s o r inverte d repeats , th e result -
ing molecule , calle d th e product , ca n b e a  knot , a n unknot , o r a  two -
component link . 

A A 
a b 

Figure 7.17 (a ) Direct repeats and (b ) inverted repeats . 

Exercise 7.1  Suppos e th e enzym e act s by addin g on e crossin g a s in Fig-
ure 7.16 . In the cas e of direc t repeats , determine whethe r th e produc t 
will be a  knot o r a  link. Similarly, determine whic h i t is in the case of 
inverted repeats . 

We use the concept of tangles from Chapte r 2  to analyze the effect o f a 
given enzyme . W e think o f th e circula r molecul e befor e th e reactio n (th e 
substrate) a s being made up o f two tangles, the substrate tangle, denote d 
S, which i s unchanged b y th e enzyme , an d th e sit e tangle , T , where th e 
enzyme acts . So far , th e sit e tangl e ha s alway s bee n trivial , consisting o f 
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two vertica l strands . However , thi s nee d no t alway s b e th e case . The en -
zyme replace s the sit e tangle with a  new tangl e called th e recombinatio n 
tangle R (Figure 7.18). We assume that we know what knot the substrate is 
in, and w e can determine wha t kno t the product becomes . The three vari -
ables that we do not know are the three tangles S, T, and R. 

Figure 718 Th e enzym e replace s th e sit e tangl e wit h th e recombinatio n 
tangle. 

Let's establis h som e notation . Le t N(Q)  denot e th e kno t o r lin k ob -
tained b y connectin g th e to p tw o strand s o f a  tangle Q  to each othe r an d 
the bottom two strands of Q  to each other. Let Q  + V denote the tangle ob-
tained by adding the two tangles Q  and V  together, this addition being the 
addition fo r tangle s tha t we defined i n Chapter 2  (Figure 7.19). In this no-
tation, the facts tha t the substrate come s from th e tangles S  and T  and th e 
product comes from th e tangles S  and R  can be written in two equations in 
the three unknowns S , T, and R: 

N(S +  T) =  substrate 
N(S +  R) =  produc t 

Since we have more variables than we have equations, we can never hop e 
to determine all three of S, T, and R  from knowin g the knotting of the sub-
strate an d th e product . I f w e happe n t o kno w on e o f th e three , however , 
we should be able to determine the other two. 

3 DSOE C 

a b  c 

Figure 7.19 (a ) N(Q). (b ) Q+V. (c ) N(Q +  V). 
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We make one assumption tha t does not come out o f the mathematics , 
but rather , i s supported b y biologica l observation . Namely , th e tangle s T 
and R  d o no t depen d o n th e tangl e S . They depen d onl y o n th e enzym e 
that is acting, and not on the knottedness of the molecule it acts on. 

One exampl e o f a  topoisomeras e i s th e enzym e Tn 3 resolvase . Thi s 
enzyme act s o n a  particula r duple x cycli c DNA molecul e wit h direc t re -
peats. Once it has matched up the two sites, it replaces the T tangle with a 
single R tangle and releases the molecule. Once in a while, however, it will 
repeat the tangle replacement a  second time before releasing the molecule. 
Even more rarely, it can repeat the tangle replacement a  number o f times , 
yielding even more complicated molecules . In a series of experiments, bio-
chemists established wha t product s resulted whe n th e enzyme acted , an d 
determined th e following equations , where w e use th e notation fo r ratio -
nal knots from Section 2.2: 

N(S +  T) = N(l) (th e unknot) 
N(S +  R)  = N(2 ) (th e Hopf link ) 

N(S +  R +  R) =  N(211) (th e figure-eight  knot ) 
N(S +  R + J R + R)  =  N(l l l l l) (th e Whitehead link ) 

From thi s se t o f equations , De Wit t Sumners , o f Florid a Stat e University , 
and Clau s Ernst , of Western Kentucky University , proved tha t S  =  ( -3, 0) 
and R  =  (1 ) (Figure 7.20). Moreover, they proved tha t it should then be the 
case tha t N(S  +  R  +  R  +  R  +  R) =  NQ2111) (th e 6 2 knot). This last kno t 
has been observe d a s a  product. Fo r more detail s on the proof, see (Sum -
ners, 1993). 

Figure 720 S  =  (-3,0) and JR =  (1) . 

A second example of a topoisomerase i s the Int enzyme. This is an en-
zyme utilize d b y th e bacteriophage X  virus . The virus insert s it s own ge -
netic materia l int o a  DN A molecul e using th e site-specifi c recombinatio n 
of the Int enzyme. The Int enzyme chooses a specific sit e on a given DN A 
molecule and a  specific sit e on the circular viral DNA molecule. When th e 
virus cuts open the two molecules and reglues the ends, the result is a new 
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DNA molecul e containin g th e vira l DN A (Figur e 7.21) . Although Figur e 
7.21 depict s th e In t enzym e actin g b y simpl y cuttin g ope n th e tw o 
molecules a t th e tw o sites , an d the n gluin g th e end s together , it s actio n 
may b e muc h mor e complicated . I t ma y inser t a  complicate d tangl e int o 
the resulting molecule. 

Jo ! o jo [D 
Figure 7.21 In t enzyme inserts bacteriophage X viral DNA. 

To determine how the Int enzyme acts , biochemists synthesized singl e 
DNA molecule s containin g bot h sites , som e o f whic h wer e relaxe d an d 
some o f whic h wer e supercoiled , bu t al l of whic h wer e topologicall y un -
knotted. Whe n th e In t enzym e wa s allowe d t o ac t o n them , th e resultin g 
molecules wer e al l (2 , *j)-torus knots o r links , also known a s a  two-braid . 
(When q  is odd , w e ge t a  knot , an d whe n q  is even , w e ge t a  two-com -
ponent link. ) In fact, fo r inverted repeat s (Figur e 7.22a) the products wer e 
always (2 , ^)~torus knots, where q  —  1 , 3, 5, . . ., 23 . [Note the (2 , l)-torus 
knot i s the unknot an d th e (2 , 3)-torus kno t i s the trefoi l knot. ] For direc t 
repeats (Figure 7.22b), the result was always a two-component link . As an 
example o f th e kin d o f theore m mathematician s ca n prove , w e hav e th e 
following [se e (Sumners, 1993)]. 

00 
Figure 7.22 Resul t fro m th e actio n o f In t fo r (a ) inverted repeat s an d (b ) 
direct repeats. 

Theorem Suppos e that we have two different substrat e tangles So and S i 
and a  site tangle T  such that N(S0 +  T ) =  unknot , and N(Si +  T ) =  un -
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knot. Suppos e tha t afte r th e enzym e In t act s on thes e tw o molecules , 
N(S0 4 - R) =  unkno t an d N(S\  +  R)  =  trefoil . Then T  and S 0 are ratio-
nal tangles (se e Figure 7.23). This is surprisingly difficul t t o prove, us-
ing severa l ver y recen t result s i n kno t theory . It' s als o a  littl e disap -
pointing, sinc e w e woul d hav e like d th e mathematic s t o sa y exactl y 
what the tangles must be. But in fact, there is not enough empirical in-
formation t o nai l the m down . Wit h mor e experimenta l data , mathe -
maticians wil l hopefully b e able to say exactly wha t topologica l effec t 
the Int enzyme has. Currently, biochemists believe the Int enzyme act s 
as in Figure 7.24. 

Figure 7.23 I n this situation, T and S 0 are rational tangles. 

Direct repeats Inverte d repeats 

Figure 724 Th e conjectured actio n of the Int enzyme. 

712 Synthesi s of Knotted Molecules 

It's one thing to find knot s and links in DNA. DNA is a molecule built u p 
out o f million s o f individua l atoms , an d i s a n extremel y complicate d 
molecule. Bu t w e migh t wonde r i f muc h simple r molecule s ca n kno t o r 
link. Perhaps we could take a chain of atoms tha t bond togethe r t o form a 
circle. However, that same chain of atoms with the same bonds may in fac t 
form a  knotted chain , rather than the unknot. As a chemist, should we dis-
tinguish betwee n thes e two molecules? Afte r all , they ar e made up o f th e 
same se t o f atom s bonded togethe r i n exactl y the sam e sequence . In fact , 
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we do hav e to treat the two molecules a s distinct , sinc e it is possible tha t 
they will have different properties . One might behave like an oil, while the 
other behaves like a gelatin. 

Actually, two molecules made up o f the same set of atoms, bonded i n 
the sam e way , can form distinc t molecules , even i f knot s o r link s ar e no t 
present. Fo r instance , Figur e 7.2 5 show s tw o molecules , eac h o f whic h 
consists o f th e sam e fou r atom s bonded t o th e sam e centra l atom . How -
ever, on e i s the mirro r imag e o f th e other . Ther e i s n o wa y t o rotat e th e 
first molecule through space to make it match the second. 

^ . - V ^ 

Figure 7.25 Two  distinct molecules in space. 

Exercise 72  I f th e fou r atom s H , H , C , and C  ar e bonded t o th e centra l 
atom C, how many distinct atoms can be constructed? (Th e four oute r 
atoms wil l appear a s the vertices of a  tetrahedron, th e center poin t of 
which wil l be the central atom. Rotate the possible molecules throug h 
space to try to match them up with one another.) 

In th e exampl e i n Figur e 7.25 , th e fac t tha t w e considere d th e tw o 
molecules t o b e differen t depende d o n ou r knowin g wha t eac h o f th e 
individual atom s was . I f w e simpl y kne w wha t th e molecula r grap h 
looked like , we woul d no t be able to distinguish th e two molecule s (Fig -
ure 7.26). 

Figure 7.26 Bot h molecules have the same molecular graph . 
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We are intereste d i n molecule s tha t ar e mad e ou t o f th e sam e atom s 
and bonds, but that can be distinguished by their molecular graphs . As an 
example, Figur e 7.2 7 show s tw o molecule s tha t ar e bot h mad e fro m th e 
same set of atoms, bonded in the same way. However, the first resembles a 
Mobius band ladder with four rungs and a  right-hand twist , while the sec-
ond resemble s a  Mobiu s ban d ladde r wit h fou r rung s an d a  left-han d 
twist. Note tha t th e second molecul e i s the mirror imag e of the first . Thi s 
means tha t th e tw o molecule s hav e exactl y th e sam e molecula r graph , 
only the graphs ar e embedded i n space in two differen t ways . We cannot 
deform th e first  embeddin g o f th e grap h t o the second embeddin g o f th e 
graph through three-space . We say that the two molecules are homeomor -
phic, but they are not isotopic. We call a pair of molecules that are homeo-
morphic but not isotopic a pair of topological stereoisomers . 

Figure 7.27 Tw o molecules made fro m th e same se t of atom s and bonds . 

As a second example , if we have the same atoms bonded i n the sam e 
sequence to form thre e molecules, only the firs t i s the unknot, the secon d 
is the left-han d trefoil , an d th e thir d i s the right-han d trefoil , al l thre e o f 
the molecule s wil l b e topologica l stereoisomer s wit h eac h othe r (Figur e 
7.28). (I n Sectio n 6.4 , w e showe d tha t th e left-han d trefoi l wa s distinc t 
from the right-hand trefoil. ) 

o <§ > <g > 
Figure 7.28 Thre e topological stereoisomers . 

Chemists are very interested in topological stereoisomers because the y 
may provide substances never before seen . A good way of obtaining topo-
logical stereoisomer s i s t o synthesiz e molecule s tha t ca n b e knotte d o r 
linked. The n th e unknotte d o r unlinke d versio n wil l b e a  topologica l 
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stereoisomer wit h th e knotte d o r linke d version . I n fact , a s earl y a s th e 
first decade of the 1900s , Willstatter discussed th e possibility o f synthesiz -
ing a  pai r o f linke d molecula r ring s a t a  semina r i n Zurich . However , i t 
wasn't unti l th e lat e 1950 s tha t chemist s bega n t o mak e progres s towar d 
this goal , with five groups independently workin g o n synthesizing linke d 
molecular rings . 

Chemists cal l a  se t o f linke d molecula r ring s a  catenan e (th e Lati n 
word catena  means chain). The first successful synthesi s of a catenane with 
verification thereo f wa s accomplishe d b y Wasserma n i n 1960 . Th e ide a 
was t o us e macrocyclization , whic h i s th e formatio n o f cycli c molecule s 
with a t leas t 2 0 atoms . Goo d technique s fo r macrocyclizatio n becam e 
available i n th e 1950s . Onc e a  larg e enoug h cycli c molecul e ha d bee n 
created, th e goa l wa s t o threa d a  secon d linea r molecul e throug h i t an d 
then preserv e th e threadin g lon g enoug h t o allo w th e tw o end s o f th e 
linear molecul e t o be glued togethe r (se e Figure 7.29) . Since Wasserman' s 
successful synthesi s o f a  catenan e i n 1960 , chemist s hav e com e u p 
with severa l othe r technique s fo r synthesizin g suc h molecules . Havin g 
successfully create d nontrivia l links , they then se t out t o create a  nontriv -
ial knot. 

Figure 7.29 Synthesizin g a link. 

How doe s on e g o abou t tryin g t o synthesiz e a  knotte d molecule ? To 
make a  knot ou t o f string, we simply hold on e end o f the string while w e 
tie a  kno t i n th e othe r end , perhap s b y puttin g a  loo p i n th e string , an d 
then passing the end o f the string through the loop. We then glue the ends 
of the string together, and voila, a knot (Figure 7.30). 

U-G-G-G-OD 
Figure 730 Makin g a knot. 
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Great, but how are we going to do this on the molecular level ? Unlike 
DNA knotting , knottin g i n synthesize d molecule s i s complicate d b y th e 
fact tha t s o fe w atom s ar e involved . Whe n tw o atom s bond , ther e i s no t 
much movemen t possibl e a t the joint, largely because there is a preferre d 
bonding angle . Thus , unles s a  larg e enoug h numbe r o f atom s ar e in -
volved, th e molecula r stran d i s too inflexibl e t o ti e in a  knot . (Thi s i s re-
lated t o th e stic k numbe r o f a  knot , whic h w e discusse d i n Sectio n 1.6. ) 
Moreover, even i f the molecular stran d i s flexible enough, how d o we ge t 
a chain of bonded atom s to form a  loop and the n ge t the end o f the chai n 
to pass through the loop? 

Instead, i t migh t b e easie r t o hav e a  templat e tha t hold s strand s o f 
molecules in place until the knot can be formed. Then the template can be re-
moved and a  knot results. This idea had been utilized by Christina Dietrich -
Buchecker and Jean-Pierre Sauvage to synthesize catenane. At the University 
of Strasbour g i n France , the y develope d a  techniqu e fo r interlacin g tw o 
molecular threads , usin g a  centra l transitio n meta l t o for m th e template . 
Then, b y connectin g th e end s o f th e tw o loops , an d removin g th e centra l 
transition metal , they had a  reliable method fo r producing catenane (Figur e 
7.31). Dietrich-Buchecker and Sauvage then realized that if they could double 
the template , they could i n essence create three crossings , so that when th e 
ends of the loops were connected, and th e transition metals removed, a  tre-
foil knot would result . In 1988, they announced th e first successful synthesi s 
of a knotted molecule. A schematic of the molecule appears in Figure 7.32. 

Figure 7.31 Usin g a template to synthesize catenane. 

Figure 732 Th e first synthesis of a knotted molecule . 
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At the same time, David Walba and his colleagues at the University of 
Colorado wer e approachin g th e proble m o f th e synthesi s o f a  knotte d 
molecule fro m a  differen t direction . Independently , i n th e lat e 1950s , 
Wasserman an d va n Gulic k had suggeste d tha t i f on e coul d synthesiz e a 
Mobius band ladder with extra twists and then break the rungs on the lad-
der, a knot o r link would result . In Figure 7.33 , we show th e cases of 1 , 2, 
3, and 5  twists, yielding a  trivial knot , the Hopf link , the trefoi l knot , an d 
the (5 , 2)-torus knot, respectively. Unfortunately, th e molecules utilized t o 
form th e Mobius band prove d t o be too rigid t o allow the requisite num -
ber o f twist s neede d i n orde r t o obtai n a  knot . However , Qu n Y i Zheng, 
working under Walba, managed to add a  clasp to the Mobius band. In the 
fall o f 1990 , Zhen g announce d th e successfu l synthesi s o f a  knotte d 
molecule (Figure 7.34). 

Figure 7.33 Obtainin g knots from twisted Mobius ladders. 

i i i 
° GD CP 

Figure 7.34 Zheng' s knotted molecule . 

There ar e numerou s way s t o attemp t generalization s o f Walba' s ap -
proach. Va n Gulic k suggeste d three-stran d ladders . Afte r twistin g an d 
gluing the two ends o f the ladders together , and the n breaking th e rungs , 
any o f th e product s show n i n Figur e 7.3 5 may result . I n fact , i f th e thre e 
strands can be made to braid, chemists might successfull y synthesiz e an y 
three-braid kno t o r link . I n Figur e 7.36 , w e sho w a  possibl e schem e fo r 
synthesizing th e figure-eight kno t o r the Borromean rings . With the addi -
tion of clasps, numerous knots and links are possible. 
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Figure 7.35 Twiste d three-strand ladders . 

Figure 7.36 Possibl e methods for synthesizing the figure-eight kno t or the 
Borromean rings. 

Exercise 7.3  Utilizin g three-stran d ring s an d clasps , show ho w chemist s 
might make a knot like the one below: 

7.3 Chiralit y of Molecules 

Mathematical question s aboun d i n th e theor y o f topologica l stereochem -
istry. A s a n example , w e mentione d earlie r tha t th e left-han d an d right -
hand Mobiu s band s wit h fou r rung s ar e topologica l stereoisomers . Thi s 
means tha t th e left-han d Mobiu s ban d ladde r wit h fou r rung s canno t b e 
deformed throug h spac e t o it s mirro r image , the right-han d Mobiu s lad -
der with four rungs . A molecular grap h in space that cannot be deforme d 
through spac e t o it s mirro r imag e i s calle d topologicall y chiral , whil e a 
molecular grap h i n spac e tha t ca n b e deforme d t o it s mirro r imag e i s 
called topologicall y achiral . (Ho w t o remembe r whic h i s achira l an d 
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which i s chiral? The best I  have come up wit h i s that achira l means "abl e 
to be deformed t o its mirror image/ ' Both "achiral" and "able " begin with 
an a.) 

You will remember tha t in Section 1.3 , we define d a  knot o r link to be 
amphicheiral if it could be deformed t o its mirror image. Hence, for knots , 
amphicheiral and topologically achira l mean the same thing. Note that we 
are ignoring such real properties of a molecule as the bond angle s and th e 
bond length. Even if a given molecule can be topologically deformed t o its 
mirror image , i t ma y no t b e possibl e t o defor m th e actua l molecul e 
through space to its mirror image, since the rigidity of the bonds won't al -
low it. A given molecule may be topologically achira l but not "chemicall y 
achiral." However , a  topologicall y chira l molecul e must  b e chemicall y 
chiral. 

In 1986 , Jonathan Simon , a  mathematician a t th e Universit y o f Iowa , 
proved tha t a  Mobius ladder wit h four o r more rungs i s always topologi -
cally chiral. This is a mathematical resul t that has chemical consequences . 
It says that any  molecule with a  molecular grap h i n the form o f a  Mobiu s 
ladder with four o r more rungs has a  topological stereoisomer , namely it s 
mirror image . Thi s i s true eve n i f th e edge s o f th e ladde r ar e exactl y th e 
same a s th e rungs . Chemist s ar e currentl y attemptin g t o synthesiz e 
Mobius ladders with indistinguishable rungs and edges (Figure 7.37). 

Figure 7.37 A  Mobius ladder with indistinguishable rungs and edges . 

What abou t a  Mobiu s ban d ladde r wit h thre e rungs ? Thi s pai r o f 
molecules wa s synthesize d b y Walba , Richards, and Haltiwange r i n 198 2 
(Figure 7.38). Are they topological stereoisomers? Not quite . Here is a nice 
figure du e t o John Simon tha t demonstrate s tha t i f we d o not distinguis h 
between the rungs and th e edges, the first embeddin g o f the graph can be 
deformed t o the second embeddin g o f the graph (Figur e 7.39) . Hence thi s 
graph i s topologicall y achiral . However , i f w e d o distinguis h betwee n 
rungs and edges , say by coloring al l rungs red an d edges blue, there is no 
deformation takin g th e firs t grap h t o th e second , s o that re d rung s g o t o 
red rungs and blue edges go to blue edges. This fact i s also due to Simon, 
and appears in the same paper. 
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Figure 7.38 Mobiu s band ladders with three rungs. 

Figure 7.39 A  three-run g Mobius ladder. (From John Simon, 1986.) 

Since chemist s woul d lik e t o fin d interestin g pair s o f topologica l 
stereoisomers, they would lik e to know whic h knots are chiral and whic h 
are achiral. The first kno t that was shown to be chiral was the trefoil knot . 
(See Section 6.4 for a  proof.) As we showed in Exercise 6.25, an alternatin g 
knot wit h od d crossin g number mus t b e topologicall y chiral . So this i s a 
good set of examples for the chemists. 

If knotted molecule s ca n be synthesized , wha t abou t molecule s in th e 
form o f various graphs ? Ever y molecul e correspond s t o some graph , bu t 
usually th e grap h i s relativel y simple . I n Figur e 7.40 , w e se e severa l 
molecules wit h graph s tha t ar e easily identified . The y ar e not th e kind o f 
graphs that mathematicians can get excited about. In fact, all of the graph s 
shown are planar graphs, meaning they can be drawn in the plane with no 
crossings. They are essentially flat. 

Ŷ  <y s> 
Figure 7.40 Molecule s in the form of graphs. 
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What abou t findin g molecula r graph s tha t ar e not flat?  Certainly , on e 
place t o loo k i s a t metals . Metal s wil l for m hug e three-dimensiona l lat -
tices, eac h ato m o f whic h wil l b e bonde d t o al l o f it s neares t neighbors . 
This is in fact why metals have the properties that they do. 

But excluding metals, can we synthesize nonplanar molecula r graphs ? 
In 1981 , Howard Simmon s II I and Le o Paquette independentl y manage d 
to synthesize molecules in the form o f the complete graph on five vertices. 
Denoted K 5/ thi s i s the grap h tha t ha s fiv e vertices , where eac h verte x i s 
connected t o every other vertex by an edge. This graph i s nonplanar (Fig -
ure 7.41) . That is to say, there is no way to embed thi s graph in the plane . 

Figure 7.41 Th e graph K5 is realized by a molecule. 

Exercise 7A  Prov e that K5 is nonplanar. [Hint:  Suppose tha t there was an 
embedding o f K 5 i n th e plane . Us e th e fac t tha t ever y circl e i n th e 
plane divides the plane into two regions (something tha t is quite diffi -
cult t o prove , bu t tha t w e wil l accep t a s true ) an d th e fac t tha t yo u 
can't get from on e region to the other without crossing the circle.] 

Exercise 7.5  Prove tha t K 33 i s also nonplanar . (JC 3/3 is the grap h wit h si x 
vertices, where w e hav e separate d th e vertices int o tw o subsets , eac h 
of size three. Every vertex in one subset is connected by edges to all of 
the vertice s i n th e othe r subse t bu t t o non e o f th e vertice s i n it s ow n 
subset.) 

If all of the edges were the same in a K5 molecule, the molecule woul d 
be topologically achiral . However, the Simmons-Paquette K 5 molecule has 
three types of edges: C-C singl e bonds, -G^Chj- chains , and -Q12O- chains. 

os^^Unsolved Question 

Prove that if the three types of edges are distinguished thi s molecule is 
topologically chiral . 



Biology, Chemistry, and Physics 20 5 

7.4 Statistica l Mechanics and Knots 

Until ver y recently , statistica l mechanic s an d kno t theor y ha d nothin g t o 
do with one another. However, in the process of discovering the new poly -
nomial invariant s fo r knots , Vaughan Jones also established a  connectio n 
between thes e tw o fields.  I t i s currentl y a n are a o f extremel y activ e re -
search. 

Let's star t wit h a  littl e statistica l mechanics . I n statistica l mechanics , 
we are dealing with large systems of particles . Instead o f keeping track of 
the characteristic s o f each particle separately , w e kee p trac k o f th e aggre -
gate behavior . Fo r instance , we migh t measur e th e averag e energ y o f th e 
system (know n as the temperature). We are only interested i n those quan -
tities tha t d o no t depen d o n th e numbe r o f particles , give n tha t enoug h 
particles ar e present . Fo r example , cuttin g a n ic e cub e i n hal f wil l no t 
change the temperature o f th e two resulting pieces . The temperature isn' t 
dependent o n th e numbe r o f particles , assumin g ther e ar e enoug h o f 
them. 

However, eve n whe n w e onl y conside r th e averag e behavio r o f th e 
system, strange effects ca n occur. One example is a phase transition, where 
a system of particles transforms fro m a  gas to a liquid, a  liquid t o a solid , 
or vice versa . Suc h a  transition doe s no t occu r fo r jus t on e molecule a t a 
time, but instead occur s for th e whole system ove r a  very shor t perio d o f 
time. Suddenly , whe n th e appropriat e temperatur e i s reached , th e liqui d 
freezes. 

A secon d exampl e i s magnetization , wher e a  ba r o f meta l ca n b e 
held i n a  magneti c fiel d an d th e magneti c axe s o f al l o f th e molecule s 
line up , resultin g i n th e magnetizatio n o f th e bar . Eve n whe n th e sur -
rounding magneti c fiel d i s turne d off , th e ba r remain s magnetized . Re -
versing th e surroundin g magneti c fiel d result s i n flipping  th e axe s o f al l 
of the molecules. The reversal of all the axes occurs almost simultaneously . 

Mathematically modeling such systems has been one of the most diffi -
cult problem s i n physics . W e discus s a  particula r mode l know n a s th e 
Ising model, developed b y E. Ising in 1925 . It works well when modelin g 
a system where only particles near one another interact . Two particles tha t 
are not neighbors have no effect o n one another. Let's look at the model a s 
it applie s t o th e magnetizatio n o f a  metal . We consider eac h molecul e o f 
the metal t o be a vertex o f a  graph. The edges of the graph denot e the in -
teractions between adjacen t molecules . Only tw o molecule s connecte d b y 
an edge can interact . 

A particular type of graph that we will look at is called a  lattice, where 
the vertice s an d edge s for m a  regula r repeatin g patter n i n space . In fact , 
metals consis t o f molecule s tha t ar e a t th e vertice s o f a  lattic e i n three -
dimensional spac e (Figur e 7.42) , and therefor e lattice s ar e relevan t t o th e 
real world. The square lattice in the plane is a particularly simple exampl e 
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of a  lattic e (Figur e 7.43) . Eac h verte x ha s fou r neares t neighbor s wit h 
which it interacts. All of the other particles are too far away to affect it . 

Figure 7.42 A  metal . 

Figure 7.43 Th e planar square lattice. 

Of course, a planar squar e lattice doesn't seem like a particularly goo d 
model fo r a  substanc e tha t i s i n a  liquid , gas , o r soli d form , sinc e th e 
molecules o f th e substanc e wil l occu r i n three-dimensiona l spac e rathe r 
than in the plane. The three-dimensional version s of this model, however , 
have s o fa r prove d to o comple x t o solve . Th e two-dimensiona l model s 
have been successfull y solved , and demonstrat e th e hoped fo r behaviors , 
such as phase transitions. 

In the Ising model , each particle ca n be in one o f two differen t states , 
which we denote with a  + 1 or — 1 a t the appropriate vertex . In the exam -
ple of magnetization, th e + 1 state corresponds t o when th e magnetic axi s 
(often calle d th e spi n vector ) point s u p an d th e - 1 stat e correspond s t o 
when th e spi n vecto r point s down . Figur e 7.4 4 depict s a  particula r stat e 
for a 3 X 3 square lattice. 

- 1 -

+1l 

- l l 

• - l ' 

1 i 

\ l ' 

1 1 

1+1 

1+1 

.+1 

Figure 7.44 A  particula r state of a 3 X 3 square lattice. 

If we have a finite se t of particles, we can number them 1,2,...  ,n  an d 
then write the state of particle i  as Sj. A  choic e of stat e for eac h particle i n 
the system gives us a state S  for th e whole system, which we write as S = 
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(sj, s2 , . . . , sn), listing the states for each of the particles in order. Each edge 
of the graph has an energy associated to it, corresponding to the energy of 
interaction between the particles at its ends. This energy of interaction de -
pends on the states of the two particles at the ends of the edge, and s o we 
will writ e i t a s E(s u sj).  In th e Isin g model , ther e ar e two possibilitie s fo r 
this energy . Whe n s t =  s ;, we hav e on e energ y o f interaction , an d whe n 
s{ # Sj,  we have another . 

E= =  E(+1,+1 ) =  E ( -1 , -1 ) 

and 

E^ =  E(+l , -1 ) =  E ( - l , +1 ) 

We do not specify particula r value s fo r E = an d E # becaus e the values de -
pend o n the particular syste m that we are modeling. For each edge, it wil l 
be handy to define a  term w(s if sj),  which is given by 

(-Ejs^Sj)] 
w(si, si) = exp I  ^  I 

(Note: exp (z)  denotes e2.) The value k is the so-called Boltzmann constant , 
which in case you were wondering i s 1.38 X  10~23 joules/degrees Kelvin . 
The variable T  is simply th e temperatur e o f th e system , given i n degree s 
Kelvin. Notice tha t i n thi s model , w  als o take s o n on e o f tw o values , de -
pending on whether s { and Sj  agree or disagree. We denote these two possi-
bilities by w= an d w±. 

The energy of the entire system of particles in a particular stat e can be 
calculated as the sum of the energies of all the edges. We write this as 

E(S) = mSi,Sj) 

We are interested i n a function Q(S)  that depends on the energy of th e 
system when it is in state S. This function i s given by 

Q(S) =  exp 

Then, we see that 

Q<S) - « P ( = j ^ )  -  ex p ( l H £ 2) -  nex p ( l ^ )- n** , „ 

(Note: TlZi denotes the product ZiZ2... z n.) 
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We then defin e a  function calle d th e partition function denote d b y P, 
which i s equa l t o th e su m ove r al l possibl e state s o f th e syste m o f thes e 
terms. We write this as: 

P =  Ss Q(S) =2S exp — ^ - -  S s n w(s u sj) 

We will primarily be working with P in this last form . 
The partitio n functio n i s a  usefu l quantit y t o determine . Fro m it , w e 

can calculate the value of any observable property of the system. In partic-
ular, w e ca n calculat e th e probabilit y tha t th e syste m o f particle s i s i n a 
particular stat e S0 as 

exp(-E(S0)/fcD 

P 

Exercise 7.6  Determin e th e partitio n functio n o f th e Isin g mode l corre -
sponding t o a  2 X  2 planar lattice , also known a s a  square . Note tha t 
there ar e 2 4 possible state s o f th e system , generatin g 1 6 terms i n th e 
partition function . However , many o f them are the same. Write the re-
sulting function i n terms of w= and w^. 

Although u p t o no w w e hav e bee n lookin g a t graph s comin g fro m 
lattices, w e wil l no t restric t ourselve s t o thes e graph s an y longer . Th e 
one restrictio n tha t w e wil l retai n i s tha t th e graph s tha t w e loo k a t 
should b e plana r graphs , tha t i s t o say , graphs tha t li e i n th e plan e wit h 
no edges crossing ove r one another . In general , if th e number o f particle s 
is a t al l large , computin g th e partitio n functio n become s extremel y 
difficult. Fo r a  grap h wit h n  vertices , we mus t su m ove r th e 2 n possibl e 
states o f th e syste m (sinc e eac h o f th e n  particle s ha s tw o possibl e 
states, an d therefor e th e numbe r o f state s o f th e se t o f particle s i s th e 
product o f thes e n  twos) . Fo r instance , 5 6 particle s woul d mea n 2 56 

possible state s o f th e system , whic h i s approximatel y 7. 2 X  10 16. I f 
our computer ca n calculate the terms of the partition function fo r one mil-
lion state s pe r second , the n i t wil l onl y tak e ou r compute r 228 3 
years t o com e u p wit h th e whol e partitio n function . Hence , cleve r 
means ar e neede d t o avoi d havin g t o d o suc h a  calculation . Tha t bring s 
us to the so-called Yang-Baxter equation , also known as the star-triangl e 
relation. 
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Figure 7.45 A  sta r in the graph. 

Suppose we have a  so-called sta r i n our graph , tha t i s to say a  verte x 
with thre e edges coming ou t (Figur e 7.45) . Let's label the vertex A.  Le t B, 
C, and D  be the three vertices that are attached to A. The n the term of th e 
partition function Q(S)  corresponding to a particular stat e S can be written 
as the product of the terms for the edges incident to A times the product of 
the terms for al l the other edges. Hence, this term becomes 

Q(S) =  Uw{s if sj) = w(sA, sB) w{sA, sc) w(s A, sD) Iiw{s ir sj) 

In the second product Il^(s f, sj) above, and in all the following places tha t 
it occurs , we ar e takin g th e produc t ove r al l th e term s correspondin g t o 
edges other than the three edges between A an d B , A an d C , and A an d D . 
Let S  be a particular stat e of the system such tha t sA =  1 . Let S f b e a  stat e 
that i s identica l t o S  except tha t s A =  —  1. Then, addin g togethe r th e tw o 
terms in the partition function fo r these two states, we have 

Q(S) +Q(S f) =  w(+\,  s B) w(+l, s c) w(+l,  s D) Uw(su sj)  + 
w ( - l , sB) w ( - l, s c) w{~\,  s D) Ihv(su sj) 

= (W(  + 1, SB) W( + 1, SC) W( + 1, SD) +W(~l,  S B) W{-If S C) W(-1, S D)) Uw(s if Sj) 

Since we can do this for any pair of states that differ onl y in their values a t 
A, an d sinc e every stat e has a  corresponding stat e that does differ fro m i t 
only in its value at A, we can write the entire partition function a s 

P = %s(w(+\, s B) w{+l, s c) w(+l , sD) + 
w(-l, s B) w(-\, s c) w(~l,  s D)) Uw(sif Sj) (7.1 ) 

where now we sum over states S of the system of particles excluding A. 
We would like to exchange the term 

w(+l, s B) w(+l, s c) w(+l,  s D) +  w(~l,  s B) w(-l, s c) w(~l,  s D) 
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for a  term tha t depend s o n the energies o f edges between B , C, and D . In 
this way, we will have replaced th e sta r tha t was centere d a t A b y the tri -
angle through B , C, and D  (Figure 7.46) . In general, we would no t be abl e 
to d o this , excep t fo r th e fac t tha t th e energie s o f interactio n alon g th e 
three ne w edge s nee d no t b e th e sam e energie s o f interactio n alon g th e 
rest of the edges in the graph . 

A 

Figure 7.46 Th e star is replaced by the triangle. 

Let w'{s if Sj)  denote th e ne w energie s o f interactio n alon g th e thre e 
edges between B , C, and D . If we ca n find value s fo r w f(sB, s c), w

f(sc, s D), 
and w f(sD/ s B) such that the following equatio n holds, then we will be able 
to replace the star with a triangle. 

w(l, s B) zv(l, sc) w(l,  s D) +  w{-\,  s B) w(-l, s c) w(-l,  s D) = 
w'(sB, s c) w'(s 0 s D), wf(sD, s B) (7.2 ) 

For example , when s B, sc, an d s D ar e al l equal t o +1 , we obtai n the equa -
tion 

wl +  w | =  (wL) 3 

Exercise 7.7  Sho w that as we plug in various choices of ± 1 for s B, sc, an d 
sD i n Equatio n 7.2 , two distinc t equation s ar e generated . Solv e thes e 
two equations to find wL,  and w^  in terms of w= an d w^. 

Once we know wL,  and w^,  we can replace the partition functio n (7.1 ) 
by the equation 

P = Xw'(s B, s c) w'{s a s D) w'(sD, s B) YIw(su sj) 

This is exactly the partition function o f the original graph with the star re-
placed by the triangle, only taking the interaction energies along the thre e 
edges of the triangle to correspond to w' instea d of w. 
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So thi s i s th e star-triangl e relation , als o know n a s th e Yang-Baxte r 
equation. Instea d o f calculatin g th e partition functio n o f a  graph contain -
ing a  star , we replace the sta r wit h th e corresponding triangle , and calcu -
late the partition functio n fo r a graph with one less vertex. Remember, on e 
less vertex wil l halv e th e tota l number o f term s i n th e partitio n function , 
making ou r jo b o f determinin g th e partitio n functio n a  lo t easier . Great , 
but what does any of this have to do with knot theory? 

In Sectio n 2.3 , we demonstrate d ho w t o turn a  knot projectio n int o a 
signed plana r graph . I n particular , th e goa l o f Exercis e 2.2 4 wa s t o se e 
what happene d t o th e Reidemeiste r move s unde r thi s transformation . I n 
Figure 7.47 , we see that a Type III Reidemeister mov e on a  knot projectio n 
becomes a  star-triangl e exchang e o n th e correspondin g signe d plana r 
graphs. Not e tha t w e wer e originall y lookin g a t partitio n function s o f 
planar graphs without signs on the edges. However, we can define a  parti-
tion function fo r a  signed plana r graph . Instead o f having a  single energ y 
of interactio n E($ u sj) and th e correspondin g ter m iv(s u sj),  we hav e tw o 
types o f energie s o f interaction s an d tw o type s o f term s w+(s if sj)  an d 

Figure 7.47 Typ e III Reidemeister mov e becomes star-triangl e exchange . 

Each o f w + an d w? _ take s o n tw o possibl e value s dependin g o n 
whether s f =  s ; or s, ¥=  s ;. Given an appropriate choice for thes e values, the 
partition functio n o f a  signe d plana r grap h wil l als o satisf y th e star -
triangle relation, thereby making it an invariant o f the Type III Reidemeis-
ter move . In fact , give n th e extr a freedo m o f assignin g fou r differen t val -
ues rather tha n jus t two, we no longer nee d t o assume tha t th e values fo r 
the w's  alon g th e thre e new edge s ar e distinc t fro m th e value s o f th e w'$ 
corresponding to the original graph . 

If we can make a choice of interaction energies on the edges so that th e 
partition functio n als o satisfie s relation s correspondin g t o th e Typ e I  an d 
Type I I Reidemeiste r moves , the n th e partitio n functio n become s a n in -
variant fo r knot s an d links . Thi s form s th e basi s fo r th e connectio n be -
tween knot theory and statistica l mechanics. 
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In order tha t th e partition functio n remai n invarian t unde r th e Type I 
and Typ e I I Reidemeiste r moves , certain condition s mus t b e satisfie d b y 
w+ an d z*?_ . For instance, a Type II move on a knot projection ca n translat e 
into either of the following changes on the signed planar graph . 

Figure 7.48 Translatin g Type II moves to the signed planar graphs . 

Exercise 78  Sho w tha t i n orde r fo r th e partitio n functio n t o satisf y th e 
first translatio n o f a  Type II Reidemeister mov e a s above , w+ an d w _ 
must satisfy th e equation 

w+(a, b) w_{a, b) = 1 (7.3) 

for eac h of the possible values of a and b.  (In particular, note that onc e w e 
know w+,  w_ is completely determined. ) 

In orde r tha t th e partition functio n b e lef t invarian t unde r th e secon d 
of these translations, we also need it to be true tha t 

wJfi, 1 ) w+(l, b) + wM,  ~1 ) w+(- l, b)  = 2  8(«, b) 

for a = ± 1 and b  = ±1 , where 

(7.4) 

«fc»-{j« : 
= b 
*b 

is the so-called Kronecke r delta function (als o sometimes called the Dirac 
delta function). 

Exercise 7.9  Sho w tha t a  partitio n functio n correspondin g t o value s fo r 
w+ an d w_ that satisfy Equation 7.4 will be left invariant by the second 
translation of a Type II Reidemeister move . 

Exercise 7.10  Show that if 
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, u . J  1  i f a = b 

and if 

, 7  x f  1  iia  =  b 
w-(a, b)  =  i  -  •£  ,  i 

then both Equations 7.3 and 7.4 are satisfied . 
Similarly, the translations of the Type III moves generate equations fo r 

w+ an d w _ tha t ca n be satisfied b y the appropriate choic e of their values . 
For instance, one of the Type III Reidemeister moves translates into 

w+(l, sB) w+(l, sc) W7_(l , sD) +  w+(-l,  s B) w+(-l, s c) w_(-l,  s D) = 
Jlw+(sB, s c) w_{s a s D) w_(sD, sB) (7.5 ) 

Exercise 7.11  Sho w that the values of w+ an d w_  tha t were given in Exer-
cise 7.10 also satisfy Equation 7.5. 

As wit h th e cas e o f th e bracke t polynomial , th e Typ e I  Reidemeiste r 
move doe s caus e th e partitio n functio n t o vary. However , jus t a s we di d 
for th e bracket polynomial , we ca n place a  factor i n fron t o f the partitio n 
function tha t accommodates thi s variation and causes the resultant "parti -
tion function " t o be invarian t unde r al l thre e Reidemeiste r moves . Thus , 
we obtai n a  partition functio n tha t i s an invarian t fo r th e correspondin g 
knot or link. 

In the case of the Ising model, the resulting partition function yield s a 
knot invarian t know n a s th e Ar f invariant . W e us e th e Ar f invarian t i n 
Section 8.2 , althoug h w e develo p i t fro m a  completel y differen t poin t o f 
view. I n Sectio n 8.3 , we generaliz e th e Isin g mode l t o th e Pott s model , 
where we allow q  different state s a t each vertex of the graph. With appro -
priate choices for the values of w+ an d K;_ , the partition function generate s 
a knot invariant, which turns out to be the Jones polynomial V(f),  where q 
and t  are related by the equation q = 2 + t +  t~\ 
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Knots, Links, 

and Graphs 

8. 1  Link s in Graphs 

Graph theory is an area of mathematics tha t traditionally had very little to 
do wit h knot s o r links . But w e wil l look a t a  recen t are a o f researc h tha t 
ties the two together . 

As we saw in Chapter 2 , a graph consist s of a  set of vertices and a  se t 
of edge s tha t connec t th e vertices . Figur e 8. 1 contain s som e picture s o f 
graphs. A graph is simply defined b y the number o f vertices it has and b y 
which vertices are connected by edges. So, the two graphs in Figure 8.2 are 
considered t o be equivalent graphs even though they sit in space in differ -
ent ways . We say tha t th e tw o graph s ar e isomorphic , o r tha t the y hav e 
the sam e isomorphis m type . Sometime s w e wil l tal k abou t a n abstrac t 
graph, meaning the isomorphism typ e of the graph, rather tha n a  particu -
lar way of realizing the graph in space. 

The graph K 6/ calle d th e complete grap h on six vertices, is the grap h 
where every one of the six vertices is connected t o every other on e by ex -
actly one edge. Figure 8.2 shows two different way s to place K6 in space. 
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_ > ~ ^ 

Figure 8.1 Graphs . 

Although thes e tw o graph s ar e isomorphic , the y ar e no t isotopic , sinc e 
there is no way to deform on e of them through space to look like the other, 
without allowing edges to pass through themselves or each other. Just as we 
did fo r surface s i n Chapter 4 , we call a particular way to place K6 in space 
an embedding of K6. Figure 8.3 shows a much nastier embedding of K6. 

Figure 82 Tw o ways to place K6 in space. 

Figure 83 A  nast y embedding of K6. 

Let's call a triangle in an embedding o f K6 any set of three consecutiv e 
edges that form a  triangle in the graph. Notice that i f we choose any three 
vertices, we ca n form a  triangle fro m th e edge s connectin g them . We can 
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also form a  second triangl e from th e remaining three vertices (Figure 8.4). 
Thinking o f thi s pai r o f triangles a s two component s o f a  link, we ar e in-
terested in whether they are linked or not in the embedding (Figur e 8.5). 

Figure 8.4 A  pai r of disjoint triangles defined by three vertices. 

A4 4 1 
a b 

Figure 8.5 (a ) Unlinked triangles , (b) Linked triangles . 

In 1983 , John H . Conwa y (th e sam e Conwa y wh o catalogue d knots ) 
and Camero n Gordo n (wh o cosolve d on e o f th e oldes t problem s i n kno t 
theory; se e Sectio n 9.3 ) publishe d a  pape r entitled , "Knot s an d Link s i n 
Spatial Graphs " (Conwa y an d Gordon , 1983) . In tha t paper , the y prove d 
the following theorem . 

Theorem Ever y embedding o f K6 contains a t least one pair o f linked tri -
angles. 

This i s a n amazin g fact . N o matte r ho w w e plac e K 6 i n space , ther e 
will alway s b e a  lin k containe d withi n it . Eve n i f w e chang e th e embed -
ding by letting one edge pass through anothe r specificall y i n orde r t o de-
stroy a  lin k i n th e origina l embedding , w e can' t hel p bu t eithe r creat e a 
new link in the process or a t least leave another link in the embedding. In 
particular, all three of the pictures in Figures 8.2 and 8.3 contain nontrivia l 
links. Figure 8.6 shows a nontrivial link in the first picture . 
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Figure 8.6 A  nontrivia l link in the first embedding . 

Exercise 8.1  Fin d a  nontrivial link in the second embedding . How abou t 
the third? 

In fact , ther e may be more than on e pair o f linked triangle s in an em -
bedding, but there is always at least one by the theorem. Let's go throug h 
the proo f o f th e theorem . It' s surprisingl y easy . Each choic e o f thre e ver -
tices gives us a pair of disjoint triangles , one that passes through the three 
vertices tha t w e chos e an d on e tha t passe s throug h th e othe r thre e ver -
tices. How many pairs of disjoint triangles are there in K6? 

Well, first let' s see how many ways there are to pick a set of three ver -
tices from a  set of six.  We have six choices for the first vertex , then five re-
maining choice s for th e second vertex , and finally  fou r remainin g choice s 
for the last vertex. Thus, there are a total of 120 choices here. But we don' t 
care about the order in which the vertices were picked. That is, if 1 , 3, and 
then 2 were picked, that gives the same triangle as if 2 ,1, and the n 3  were 
picked. Therefore , sinc e ther e ar e si x differen t way s w e coul d orde r 1 , 2, 
and 3 , we hav e t o divide ou r tota l numbe r o f choice s by 6 . This give s 20 
different way s t o pic k thre e vertice s wher e th e orde r o f th e vertice s 
doesn't matter . Bu t i n fact , i f {1 , 2, 3 } and {4 , 5 , 6 } were tw o differen t 
choices for our set of three vertices, they would both yield the same pair of 
triangles, namely th e triangle through 1 , 2, and 3  paired wit h th e triangl e 
through 4, 5, and 6. Thus, we have to divide our total of 20 possibilities by 
2, leaving us with a total of 10 pairs of disjoint triangles . 

We need a  wa y t o distinguis h embeddings , a  so-calle d invarian t fo r 
the embeddings . Suppos e w e hav e a  particula r embeddin g o f K 6. Eac h 
pair o f disjoin t triangle s in the embedding ha s a  linking number onc e w e 
orient th e two triangle s (se e Section 1.4) . Bu t notice tha t changin g a n ori -
entation on one of the triangles only changes the sign of the linking num -
ber, not th e absolute value o f the linking number . Since we don' t wan t t o 
bother with orientations , we just look at the absolute values of the linkin g 
number for each pair of disjoint triangles in the embedding. 

Given an embedding o f K6, let's define U  to be the positive integer ob-
tained by taking the sum of the absolute values of the linking numbers fo r 
all 1 0 pairs o f disjoin t triangle s i n th e embedding . I n th e firs t pictur e i n 
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Figure 8.2, only on e o f the 1 0 pairs o f disjoin t triangle s i s linked, an d th e 
absolute value of the linking number for that pair of triangles is equal to 1. 
So, for that embedding, 11 = 1 . 

Exercise 8.2  Calculat e U  for the second embedding of K6 in Figure 8.1. 

If w e defor m ou r embeddin g aroun d i n spac e withou t lettin g an y 
edges pass through eac h other , or as mathematicians pu t it , if we isotop e 
the embedding through space, then the linking numbers of all of the trian-
gles remai n th e same . Hence U  remains unchanged . Bu t we wan t t o un -
derstand how this number U  changes as we go from on e embedding of K6 

to a  differen t embedding . What' s th e bes t wa y t o thin k abou t changin g 
embeddings? I f we allow edges to pass Jfchrdugh one another, and trea t al l 
edges as if they were made of rubber, and Can  be deformed accordingly , it 
shouldn't be any problem to get from on e embedding to any other. For in-
stance, we can get from th e one embedding a t the lef t i n Figure 8.7 to the 
one at the right by the sequence of crossing changes and isotopies depicted . 

Figure 8.7 Changin g one projection into another . 

Keep in min d tha t w e ar e dramaticall y changin g th e structur e o f ou r 
object when w e allo w edges t o pass throug h on e another . Fo r instance , if 
we too k th e grap h K 3, whic h i s simpl y a  triangle , an d embedde d i t i n 
space i n al l th e differen t possibl e ways , w e woul d simpl y b e lookin g a t 
all the possible knot s i n space . But onc e we allo w edge s t o pass throug h 
one another , ever y on e o f thos e knot s coul d be change d int o th e unknot . 
Therefore, al l of the techniques o f knot theory ar e useless once we decid e 
to let edges pass through one another . 

Let's define a  new number V  to be equal to zero if U  is even and one if 
U is odd . W e cal l V  th e mo d 2  reduction o f I T since V  i s simpl y th e re -
mainder when we divide L T by 2. We show that even though changing em-
beddings destroy s th e basic properties o f ho w ou r grap h sit s in space , i t 
does no t chang e V.  Th e argumen t i s relatively simple . We alread y kno w 
that isotoping the embedding doesn't affect U , and hence can't affect V.  So 
all we have to check is that crossing changes do not affect V. 
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Suppose we do change a  crossing. If that crossing is between a n edg e 
and itself , the crossing cannot be between two disjoint triangle s since tw o 
disjoint triangle s canno t shar e th e sam e edge . Henc e U  is unaffecte d b y 
the crossin g change . In fact , i f th e crossin g i s between tw o edge s comin g 
out o f the same vertex, then the two edges cannot be on disjoint triangle s 
and the crossing change again leaves the number U  unchanged. Therefore , 
the onl y tim e U  and V  migh t b e affecte d i s i f w e chang e a  crossin g be -
tween tw o nonadjacen t edge s £ j an d £ 2. An y pai r o f disjoin t triangle s 
such tha t on e o f th e triangle s contain s Ei  an d th e othe r contain s E 2 wil l 
have thei r linking number change d b y ± 1 when we chang e thi s crossing . 
But together , th e tw o edge s E x an d E 2 end a t fou r o f th e vertice s i n th e 
graph. There are only two vertices vx an d v 2 that they don' t intersec t (Fig -
ure 8.8) . If we pai r V\  with E\  and v 2 with E 2, we obtai n a  pair o f disjoin t 
triangles. If we pai r v 2 with E t an d V\  with E 2, we obtain a  second pai r of 
disjoint triangles . These tw o pair s o f disjoin t triangle s ar e th e onl y pair s 
that pass through the two edges Ei and E 2. Since changing the crossing be-
tween Ei  and E 2 changes eac h o f the linking numbers fo r thes e two pair s 
of disjoint triangles by either + 1 or - 1 , th e crossing change alters U  by ei-
ther —2 , 0 o r +2 . Mos t importantly , U  i s change d b y a n eve n number . 
Adding or subtracting an even number from U  will leave V unchanged . 

^ i f c 

Figure 8.8 Tw o nonadjacent edge s in K6. 

Thus, a s w e g o fro m on e embeddin g o f K 6 t o anothe r b y changin g 
crossings, V  remain s unaffected . Bu t w e hav e alread y see n U  =  1 , an d 
hence V  =  1  in the first  embedding o f X6 in Figure 8.2. Therefore, V  =  1  in 
every projection o f K 6. In particular , i f V  =  1 , U  can neve r be zero . So, in 
every projection o f K6 there is at least one pair o f disjoin t triangle s with a 
nontrivial linking number. That is to say, every projection o f K6 contains a 
nontrivial link . 

Note tha t an y grap h containin g K 6 a s a  subgrap h wil l als o contai n a 
link in any embedding of it into three-space. We say that a graph is intrin-
sically linke d i f i t ha s th e propert y tha t an y embeddin g o f i t i n three -
space contains a nontrivial link. 
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Exercise 8.3*  The grap h K 3/3/i i s the grap h give n b y takin g thre e set s of 
vertices, the first  set having three vertices, the second se t having thre e 
vertices, and th e third se t having one vertex. All of the vertices in an y 
one of the sets are connected by edges to all of the vertices in the other 
two set s but t o none o f th e othe r vertice s i n thei r ow n set . Figure 8. 9 
shows a  particular embeddin g o f this graph. Prove that K3/3/i is intrin-
sically linked. 

Figure 8.9 A n embedding of K3/31. 

Exercise 8.4  Defin e a n expansio n o f a  grap h G  to b e a  ne w grap h ob -
tained fro m G  by "splittin g a  vertex of G." By this, we mean replacin g 
a particular vertex v  of G by two vertices u  and w  connected by a new 
edge, an d replacin g eac h o f th e ol d edge s tha t ende d a t v  b y a  ne w 
edge that begins where the old edge began and ends at either u or w. A 
picture o f a n expansio n appear s i n Figur e 8.10 . Notic e tha t ther e ar e 
lots of choices for expansions, even if we have already chosen the vertex 
to expand. Prove that if G is intrinsically linked, so is any expansion of G. 

r 

Figure 8.10 A n expansion of the graph G. 

Very recently, three mathematicans, Neil Robertson (a t Ohio State Uni-
versity), P. D. Seymour (a t Bellcore), and Robi n Thomas (a t Georgia Tech), 
proved tha t a  graph i s intrinsically linke d i f and onl y i f i t contains one of 
seven specia l graph s calle d th e Petersen graphs  (Figure 8.11) , or an expan -
sion o f on e o f the m (Robertso n e t al. , 1993) . The Peterse n graph s ar e ex -
actly th e graph s obtainabl e fro m K 6 b y repeate d triangle- Y exchanges , 
where thre e edge s tha t for m a  triangl e i n a  grap h ar e replace d b y thre e 
edges and a new vertex that form a Y. We also allow the reverse operation , 
replacing a  Y  with a  triangle , which incidentall y i s th e star-triangl e rela -
tion we saw in Section 7.4. 
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Figure 8.11 Th e Petersen graphs. 

Exercise 8.5  Sho w that K3/3/1 is a Petersen graph by demonstrating tha t i t 
can be obtained fro m K 6 by triangle-Y exchanges. Determine which of 
the graphs in Figure 8.11 represents £3,3,1. 

8.2 Knot s in Graphs 

In the previous section, we showed that the complete graph on six vertices 
always contain s a  pai r o f linke d triangles , no matte r ho w w e embe d th e 
graph in space. We could also ask if there are graphs such that they always 
contain a knot, no matter how we embed them in space. But first, we need 
to decide how we want the knot to sit in the graph. 

A Hamiltonia n cycl e i n a  grap h i s a  sequenc e o f edge s i n th e grap h 
such tha t an y two consecutive edges share a  vertex, the las t edge and th e 
first edg e shar e a  vertex , and ever y verte x i s hi t b y a  pai r o f consecutiv e 
edges exactly once . Together th e edges in the Hamiltonian cycl e make u p 
a loop in the graph that hits every vertex exactly once (Figure 8.12). Such a 
loop may be either knotted o r unknotted. In the same paper in which they 
proved K 6 is intrinsically linked , Gordon an d Conwa y (1983 ) also prove d 
that i f th e grap h K 7 i s embedde d i n spac e i n an y manne r whatsoever , i t 
will always contain a Hamiltonian cycle that is knotted (Figur e 8.13). 

Figure 8.12 A  Hamiltonia n cycle in K6. 
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Figure 8.13 A n embedding of K7. 

Exercise 8.6  Fin d a knotted Hamiltonian cycle in this embedding of K7. 

Exercise 8.7  Fin d a n embedding o f K 7 containing n o trefoi l knots . (Hint: 
Use th e fac t tha t th e trefoi l kno t i s prim e an d mak e sur e al l o f th e 
knots in your embedding are composite.) 

We are no t abl e t o g o through th e entir e proo f tha t a n embeddin g o f 
K7 always contain s a  knotted Hamiltonia n cycle , as i t i s a  littl e too time -
consuming. However, the original paper i s readable and i t is a good plac e 
to obtai n mor e information . Instead , w e tal k a  bi t abou t th e ide a o f th e 
proof. 

First, we need t o look at a new invariant for knots and links called th e 
Arf invariant . Lik e the variabl e V  w e define d i n th e las t section , the Ar f 
invariant wil l always have a value of 0 or 1 . There are several ways to de-
fine th e Ar f invariant . W e tak e a  poin t o f vie w du e t o Loui s Kauffma n 
(1983). Let' s defin e a  ne w typ e o f mov e o n a n oriente d kno t o r link , 
namely, let's define a  pass-move to be a change in a projection as in Figure 
8.14. A pair o f oppositely oriented strand s can be passed throug h anothe r 
pair o f oppositely oriente d strands . Such a move certainly can change th e 
knot we are dealing with. We call two knots pass equivalent if there exists 
a sequenc e o f pass-move s tha t take s u s fro m th e on e kno t t o th e other , 
where we ca n rearrange th e projection o f th e knot an y way tha t we wan t 
after eac h pass-move. 

rure 8.14 A  pass-move. 
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Exercise 8.8  Sho w tha t a  kno t wit h par t o f it s projectio n a s i n Figur e 
8.15a i s pass equivalent t o a knot wit h tha t par t o f it s projection a s in 
Figure 8.15b. (A belt may help you see this, where the edges of the belt 
correspond to the strands of the knot.) 

a b 

Figure 8,15 Thes e two knots are pass equivalent . 

Here i s the amazin g part . Every  knot is  either pass equivalent to the un-
knot or  to the  trefoil  knot. Let' s spen d som e tim e showin g tha t thi s i s th e 
case. We utilize the Seifert surfaces tha t we discussed in Chapter 4 to show 
this. Given a knot, choose a projection o f the knot and then apply Seifert' s 
algorithm t o obtai n a  Seifer t surfac e fo r th e knot . Remembe r tha t th e re -
sulting surface i s orientable with a  single boundary component , such tha t 
the boundary is knotted into the knot in question . 

We show tha t a  Seifert surfac e ca n be deformed throug h spac e so that 
it appears as a single disk with bands attached. For instance, in Figure 8.16 
we see the Seifert surfac e fo r a  projection o f th e figure-eight kno t and th e 
deformed Seifer t surfac e tha t i s isotopi c t o th e original . Mor e generally , 
since Seifert' s algorith m alway s produce s a  surfac e obtaine d b y connect -
ing a  se t o f disk s by twiste d bands , we ca n alway s choos e a  sequenc e of 
the connectin g band s t o untwis t an d widen , s o tha t th e se t o f disk s be -
comes a  singl e dis k wit h a  se t o f bands attache d (Figur e 8.17) . Note tha t 
none o f th e resultin g band s ha s a n od d numbe r o f twist s i n it , sinc e th e 
Seifert surface is always orientable. 

Figure 8.16 Th e figure-eight Seifer t surface is a disk with bands. 
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Untwist and widen 

Figure 817 Ever y Seifert surface is a disk with bands. 

Exercise 8.9  Sho w tha t i f w e pu t a n orientatio n o n th e boundary o f th e 
Seifert surface , the n th e tw o edge s o f eac h ban d ar e alway s oriente d 
oppositely. 

Therefore, if we pass one band through another, we are simply doing a 
pass-move on the knot. Not only do we get a new knot that is pass equiva-
lent t o the ol d one , we also ge t a  Seifer t surfac e fo r th e new kno t (Figur e 
8.18). Notice tha t by utilizing pass-moves i n the way illustrated i n Figur e 
8.19, we can unhook bands that are linked with one another. 

X X 
Figure 8,18 Passin g bands through one another is a pass-move on the knot. 

5-S 
Figure 8.19 Pass-move s allow us to disentangle the bands. 

We also sa w i n Exercis e 8. 8 tha t w e ca n remov e fou r half-twist s i n a 
band. Sinc e the origina l surfac e wa s orientabl e an d sinc e thi s mean s tha t 
each band ha s an even number o f half-twists i n it, we can lower the num -
ber of half-twists in each band unti l it has zero or two half-twists i n it. The 
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bands with tw o half-twists i n them ca n then be deformed t o replace eac h 
twist with a  curl (Figure 8.20). (This is exactly the same as when w e wer e 
looking a t DN A i n Chapte r 7 , where w e replace d som e twis t i n a  DN A 
ribbon with writhe.) Now, we have no twists in the bands. 

Figure 820 Tw o half-twists can be replaced by a curl. 

Finally, not e tha t i f on e o f th e end s o f eac h o f tw o distinc t band s B\ 
and B2  lie between the two ends of a third band B 3 on the edge of the disk, 
we can slide the end of Bj along one edge of B2 to move it outside the two 
ends of B3 (Figure 8.21). If necessary, we will repeat the disentangling ste p 
and th e untwisting ste p afte r thi s sliding . In thi s way , we ca n mak e sur e 
that there is at most one end of a band between the two ends of any single 
band on the edge of the disk. 

Figure 821 Movin g one of two ends out from between the ends of a third 
band. 

Exercise 8  JO Explai n why every band mus t hav e anothe r en d o f a  band 
between its two ends on the boundary of the disk . 

In particular , thi s mean s tha t th e band s matc h u p i n pair s an d ther e 
are an eve n numbe r o f them . Thus, the Seifer t surfac e no w appear s a s i n 
Figure 8.22. NowT we can cat the Seifert surfac e int o pieces, each of whic h 
has two bands attached t o it. The original knot get s cut into a set of facto r 
knots. Eac h o f th e resultin g facto r knot s i s pas s equivalen t t o on e o f th e 
three knots shown in Figure 8.23. 
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Figure 8.22 Th e Seifer t surfac e afte r disentangling , untwisting , an d slid -
ing. 

Figure 8.23 Cu t the Seifert surface into three types of pieces. 

Exercise 8.11  Sho w that the knots bounding the first and secon d types of 
Seifert surface s i n Figure 8.23 are trivial knots , while the knot bound -
ing the third type of Seifert surface i s a trefoil knot . 

We have therefor e jus t show n tha t ever y kno t i s pass equivalen t t o a 
composition of trivial knots and trefoil knots. However, since the composi-
tion o f an y kno t K  with th e trivia l kno t jus t give s th e kno t K  back again , 
we have shown tha t every  knot is pass equivalent to either the trivial knot or a 
composition of  trefoil knots.  You are probably wonderin g whic h trefoi l kno t 
we mean here, since we showed tha t there was both a left-hand trefoi l an d 
a right-han d trefoi l i n Section 6.4 . Actually/it doesn' t matter , because th e 
left-hand trefoi l an d th e right-han d trefoi l ar e pas s equivalen t t o on e an -
other. Starting with the right-hand trefoil , appearing in the particular pro -
jection show n i n Figur e 8.24a , we ca n obtain it s mirror imag e by passin g 
all of the overlapping bands through each other. 

a b 

Figure 8.24 Th e trefoil is pass equivalent to its mirror image. 
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Great, we ar e gettin g close r t o ou r goal . Now w e nee d t o look a t th e 
composition of a set of trefoil knots. Let's begin with a composition of tw o 
trefoil knots . Since one of them i s pass equivalen t t o its mirror image , we 
can replace K#K  with K#K*,  where K * denotes th e mirro r imag e o f K,  ob-
tained by changing every crossing in a projection o f K  to its reverse cross-
ing. 

Exercise 8.12*  Sho w tha t i f K  is a trefoi l knot , then K#K*  is pass equiva -
lent to the trivial knot (Figure 8.25). (It takes a bit of playing around t o 
find th e righ t pass-move , but ther e i s a  single pass-move tha t wil l d o 
the trick.) 

Figure 8.25 Sho w that this knot is pass equivalent to the trivial knot. 

Now let's recap. We have shown that any knot is pass equivalent to ei-
ther the trivial knot or to a composition of a number of trefoils. If the num-
ber of trefoils i s even, we can pair the m up an d then , using the fact tha t a 
pair o f trefoils i s pass equivalent to the trivial knot, show that the origina l 
knot i s pass equivalent t o the trivial knot . On the other hand , if our origi -
nal knot is pass equivalent t o the composition o f an odd numbe r o f trefoi l 
knots, we can eliminate pairs of trefoils by pass-moves, and thereb y sho w 
that th e origina l kno t i s pass equivalen t t o a  singl e trefoil . Therefore , w e 
have proved wha t we set out to prove. Every knot is either pass equivalent to 
the trivial knot or to the trefoil knot! 

The one thing tha t we didn' t prov e is that the trefoil kno t and th e un -
knot ar e no t pas s equivalen t t o eac h other . This i s a  bi t mor e difficult , s o 
we will take it on faith. See Kaufmann, 198 3 for a  proof. 

We now wil l defin e th e Ar f invarian t a(K)  o f a  kno t K  to b e 0  if th e 
knot is pass equivalent to the unknot and to be 1 if the knot is pass equiva-
lent t o th e trefoi l knot . That' s a  prett y straightforwar d definition . A t th e 
very least , w e kno w th e Ar f invarian t fo r tw o knots , namel y th e unkno t 
and the trefoil knot . 

Exercise 8.13  Determin e the Arf invarian t o f the figure-eight kno t in Fig-
ure 8.26. 
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Figure 8.26 A  figure-eigh t knot . 

The Arf invarian t ha s one very nice property, namely, if K+, X_ , and L 
are projections tha t ar e identical outsid e th e region shown, and i f K+  and 
i<C_ are knots , while L  is a  two-component lin k wher e eac h o f th e strand s 
shown i n the picture o f L in Figure 8.27 corresponds t o a  distinct compo -
nent, the n th e Ar f invariant s o f th e tw o knot s ar e relate d throug h th e 
equation: 

a(K+) =  a(KJ +  lk(L 1,L2) 

K+ K. 

Figure 8.27 Th e Arf invariants . 

We d o no t prov e this , a s i t woul d b e to o time-consuming . I t turn s out , 
however, tha t th e Ar f invarian t ca n b e determine d fro m th e Alexande r 
polynomial tha t w e discusse d i n Sectio n 6.3 , and th e skei n relatio n satis -
fied by that polynomial can be used to verify thi s equation. 

c& (Unsolved Question 

Find a  direc t proo f tha t doe s no t utiliz e th e Alexander polynomia l t o 
show that a(K+) =  a(KJ +  lk(Lh L 2). 

The idea o f th e proo f tha t ever y embeddin g o f K 7 contains a  knotte d 
Hamiltonian cycle is similar in spirit to the proof tha t every embedding of 
K6 contains a pair of linked triangles . Given a  particular embeddin g o f K 7, 
we first  define c o to be the sum of the Arf invariants , summing ove r ever y 
Hamiltonian cycle in the graph. 



230 Th e Knot Book 

Exercise 8.14  Sho w that there are 360 Hamiltonian cycles in K7. 

We actuall y don' t car e abou t o > itself, bu t rather , w e car e abou t 
whether i t is even or odd. Therefore, just as we did when we were work -
ing with linked triangles, we define ft  to be 0 if co is even and to be 1 if o> is 
odd. (As we did with V,  we call ft the mod 2 reduction of o> since it is sim-
ply the remainder when we divide co by 2.) Then, just as we did when we 
were looking at linked triangles , we can see what effec t a  crossing chang e 
has on ft. Conway and Gordon prove tha t a crossing change leaves ft un-
affected. Thi s is a slightly more difficult argumen t that we will not go into. 
(See (Conway and Gordon, 1983) for the details.) 

But what does this mean? Since ft is unaffected b y crossing changes, ft 
must be the same for every embedding of K7. In particular, if ft is equal to 
1 for any specific embedding , ft is equal to 1 for every embedding. In fact, 
it is tedious but not too difficult t o show tha t fo r the embedding o f Kj in 
Figure 8.28 , all of the Hamiltonian cycle s excep t on e are unknotted, an d 
the las t Hamiltonia n cycl e is a trefoil knot . Hence , ft =  1  for thi s embed -
ding, and therefore for all embeddings. 

Figure 8.28 A n embedding of K?. 

Exercise 8A5  Fin d the one knotted Hamiltonia n cycl e in this embeddin g 
ofX7. 

Finally, if ft =  1  for every embedding , then for a given embedding , it 
cannot be the case that al l the Hamiltonian cycle s in that embeddin g ar e 
unknotted. Therefore , every embedding of Kj contains a knotted Hamilto -
nian cycle. 

In 1988, Miki Shimabara proved tha t any embedding o f the graph K5/5 

also contains a knotted Hamiltonian cycle. The graph K5f5 is called a bipar-
tite graph . I t is obtained by taking two sets of five vertice s and attachin g 
each vertex in the first se t to every one of the vertices in the second se t by 
edges. 
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We say that a graph is intrinsically knotted if every embedding o f the 
graph i n three-spac e contain s a  knotted cycl e (no t necessaril y a  Hamilto -
nian cycle) . Note tha t i f a  grap h contain s a  subgraph tha t i s intrinsicall y 
knotted, it also must be intrinsically knotted . 

c^ (Unsolved  Question 1 

Find other graphs besides K7 and K 5/5 that are intrinsically knotted . So 
far, thes e tw o graph s an d th e graph s tha t contai n the m ar e th e onl y 
graphs known to be intrinsically knotted . 

c&(Unsolved Question 2 

Determine a  finite  se t of graphs suc h tha t every graph tha t i s intrinsi -
cally knotte d eithe r contain s on e o f the m o r a n expansio n o f on e o f 
them. 

c0-(Unsolved Question S 

Is it true tha t i f G  is intrinsically knotted , an d an y on e vertex an d th e 
edges coming into it are removed, the remaining graph i s intrinsicall y 
linked? This holds true for K7 and K 5/5. 

By thei r characterizatio n o f intrinsicall y linke d graphs , Robertson , 
Seymour, and Thomas (1993) did prove that an intrinsically knotted grap h 
is always intrinsically linked . 

8.3 Polynomial s of Graphs 

Polynomials wer e pretty hand y whe n dealin g with knot s an d links . Let' s 
see how w e ca n compute som e polynomial s o f graphs . We start wit h th e 
so-called dichromatic polynomial, ZG {q,  v), a polynomial in two variable s 
q and v.  It' s a  polynomia l fo r abstrac t graphs . Tha t i s t o say , the polyno -
mial does no t depen d o n how th e grap h i s embedded i n three-space , bu t 
rather o n the isomorphism typ e o f th e graph . In thi s sense , it differs dra -
matically fro m th e polynomial s o f knot s an d link s tha t w e discusse d i n 
Chapter 6 . Not e tha t w e ar e allowin g mor e tha n on e edg e t o shar e th e 
same pai r o f endpoint s an d w e ar e allowing edge s tha t begin an d en d a t 
the same vertex. 

The dichromatic polynomia l i s defined b y the following thre e formu -
las: 

1. Z(. ) =  ? 
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This say s tha t a  grap h consistin g o f jus t a  singl e verte x ha s polynomia l 
equal to just q. 

2. Z(-G)  =  qZ(G) 

This says that adding a  new vertex to a graph, such that i t is not attache d 
by any edges, causes the polynomial of the graph to be multiplied by q. 

3. Z(*—< ) =  Z(- » <)  + vZ(*) 

This says tha t i f we pick a  particular edg e o f a  graph G , then th e polyno-
mial fo r G  is obtaine d b y addin g th e polynomia l o f th e grap h wit h tha t 
edge delete d t o v  time s th e polynomia l o f th e grap h wit h tha t edg e col -
lapsed down to a single vertex. 

Note tha t i f we apply thi s rule to an edge tha t begins and end s a t th e 
same vertex, we obtain: 

ZOO) =  Z(») +  vZ(» =  (1 + v)Z(» 

Let's tr y ou r luc k a t computing wit h thes e three rules . In our firs t ex -
ample, let's compute the dichromatic polynomial of the graph — - . 

Z ( ~ ) =  Z( . .) + vZ(.) =  q2 + vq 

Let's try a harder one. How about a triangle? 

Z ( A ) =  Z ( A ) +  P Z ( O ) 

= (Z(JL) +  i>Z(_.)) + z*Z(—) +  vZ(Q)) 

= <jZ(— ) +  z?Z(—) +  v(Z(~)  +  iKZ(.) +  0Z(O) ) 

= (q  + 2v) Z(—) +  (v 2 +  v 3) Z(. ) 

= (q  + 2v)(q 2 + vq)  + (v 2 + z; 3)^ = q 3 + 3t;^ 2 + 3z? 2g + v 3q 

Exercise 8.16  Fin d th e dichromatic polynomial o f a  square graph Q a n d 
of the complete graph X4 ^ . 

Of course , jus t writin g dow n th e rule s doe s no t guarante e tha t th e 
polynomial i s wel l defined . Ho w d o w e kno w tha t i f w e calculate d th e 
polynomial o f a  graph i n two differen t ways , by choosing differen t edge s 
to remove a t various stages , that we would ge t the same answer? In fact , 
although w e won' t tak e the tim e to prove i t here, we wil l always ge t th e 
same answer . Not e als o tha t unlik e th e kno t polynomials , whic h depen d 
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entirely o n th e particula r knot , thes e polynomial s o f graph s d o no t de -
pend o n how th e graph sit s in space. All that matters i s which o f the ver -
tices are hooked to which other vertices by edges. 

Okay, so we have a new polynomial. But what good is it? Well, one ex-
ample of what we could use this polynomial for i s the following. Suppos e 
that we have a  particular grap h an d w e want t o color each of the vertice s 
of the graph one of q possible colors, so that no two vertices connected b y 
an edg e hav e th e sam e color . W e cal l suc h a  choic e o f coloring s o f th e 
graph a  verte x coloring . I n fact , verte x coloring s com e u p i n th e rea l 
world. Fo r instance , suppose ther e i s a set o f VHF television station s i n a 
particular regio n o f th e country , an d som e o f thei r signal s overla p wit h 
one another. There are only 13 channels, but many more stations than that . 
Then on e form s a  graph wher e eac h statio n i s a  vertex , an d a n edg e be -
tween two stations means tha t thos e stations are located clos e enough to -
gether tha t thei r signal s wil l interfer e wit h on e anothe r unles s the y ar e 
given distinc t channels . Th e goa l i s the n t o successfull y colo r th e grap h 
(with channel numbers 1  through 13 , instead of colors) so that each station 
gets a channel, but no two stations that share an edge get the same channel. 

Surprisingly enough , i f we se t v  —  —1 i n the dichromatic polynomia l 
of th e graph , w e ge t exactl y th e numbe r o f distinc t verte x coloring s o f 
the graph . Fo r example , since th e dichromati c polynomia l o f th e triangl e 
graph i s q3 4 - 3vq2 +  3v 2q +  v 3q, it should b e the case that th e number o f 
vertex colorings of the triangle graph is 

q3 + 3(-l)q 2 +  3(-l) 2^ +  {~l) 3q =  q3 - 3q 2 + 2q 

Let's see if that i s right. Given a  triangle and q  possible colors to color th e 
vertices with , we can color the firs t verte x with any o f the q  colors. How-
ever, since the secon d verte x i s connected t o the first  b y a n edge , we ca n 
only colo r i t wit h on e o f th e remainin g q  -  1  colors. The thir d verte x i s 
connected t o bot h o f th e firs t two , an d therefor e i t ca n onl y b e colore d 
with one of the q - 2  colors that hasn't yet been utilized. Therefore, the to-
tal number o f ways that the vertices of the graph can be colored so that n o 
two connected vertices have the same color is q(q — 1 ) (q — 2 ) =  q 3 — 3q 2 + 
2q. This is exactly the same result that came from plugging v =  - 1 int o the 
dichromatic polynomial . 

In the case of our television stations , we plug v  =  —  1 and q  = 1 3 into 
the dichromatic polynomia l fo r ou r graph corresponding to the station in -
terferences, and i f the result is greater than 0, we know there is at least one 
vertex coloring of the graph, and hence there is at least one choice of chan-
nel assignments tha t wil l prevent interference . S o let's prove thi s fact tha t 
the dichromatic polynomia l o f a  graph yields the number o f vertex color -
ings whe n evaluate d a t v  =  —1 . Firs t w e shoul d prov e i t fo r graph s tha t 
have no edges. 
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Exercise 8A7  Sho w that any graph G that consists only of vertices and n o 
edges ha s it s number o f vertex coloring s give n by Z G(q, —1) . (In fact , 
for a  graph of this type, this will be true no matter what value is given 
toz?.) 

Now we want to prove it for graphs that have edges. Suppose tha t w e 
have prove d i t fo r an y grap h wit h m  edges . I f w e ca n the n sho w tha t i t 
holds fo r a  graph with m  +  1  edges, induction wil l imply that i t holds fo r 
any graph. Let G be a graph with m  +  1  edges. Let £ be an edge of G  that 
connects tw o distinc t vertice s A  an d B . Whe n v  =  —  1, Rul e 3  fo r th e 
dichromatic polynomial says that Z( ^ -< )  = Z ( $> <  )  — Z(^<), where w e 
let G ' an d G " b e the two new graph s appearin g i n the equation . Bot h G ' 
and G " hav e m  edges. Therefore Z ( > <  )  gives the number o f vertex col-
orings of G' , while Z ( X) give s the number o f vertex colorings of G" . Bu t 
the number o f vertex colorings of G will be the number o f vertex coloring s 
of G'  minu s th e number o f thos e colorings wher e both A  an d B  have th e 
same coloring . Bu t th e numbe r o f verte x coloring s o f G'  wher e A  an d B 
have the same colors is exactly the same as the number of vertex coloring s 
of G" . Henc e Z(G f) -  Z(G n) give s th e numbe r o f verte x coloring s o f G . 
But the equation says that this is Z(G). Hence Z(G)  is the number o f vertex 
colorings of G. 

This i s a n amazin g fact . Fo r instance , on e o f th e mos t difficul t theo -
rems prove d i n th e las t centur y i s th e so-calle d Four-Colo r Theorem , 
which says that any map of countries in the plane can be colored with fou r 
colors, so that the resulting map will never have two countries of the same 
color sharing an edge. This theorem was proved by Wolfgang Hake n (yes , 
the same guy who worked o n knots) and Kenneth Appel at the University 
of Illinois, using a computer to eliminate thousands of cases. 

If w e tak e th e dua l grap h t o th e ma p o f countrie s a s i n Figur e 8.29 , 
then w e ar e jus t askin g whethe r th e vertice s o f thi s plana r grap h ca n b e 
colored wit h fou r o r fewe r color s s o tha t n o tw o vertice s tha t shar e a n 
edge ge t th e same color . But the planar grap h G  has a  coloring with fou r 
colors i f an d onl y i f Z(G)  #  0  when q  =  4  and v  =  - 1 . Hence th e Four -
Color Thereom is equivalent t o proving that Z(G) ¥"  0  when q  = 4  and v  = 
- 1 fo r every planar graph G. 

Figure 8.29 A  colorin g of a map becomes a coloring of a planar graph . 
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c^QJnsolved Problem 

Find a  simple proof o f the Four-Color Theorem . This is still one of th e 
biggest open questions in all of mathematics. 

We would lik e t o sho w tha t th e dichromati c polynomia l i s related t o 
the polynomial s tha t com e fro m knot s an d links . Remembe r tha t i n Sec-
tion 2.3, we saw that a planar grap h can always be reinterpreted a s a link. 
However, each edge of th e graph generate s a  crossing in the link, and w e 
have two choices of how to put th e crossing in. If we shade the regions of 
the plane created b y the link in a checkerboard fashion , s o that the regio n 
outside the link is not shaded, we can choose all of the crossings so that if 
the shade d region s ar e place d nort h an d south , th e overcrossin g stran d 
goes from southwes t to northeast, as in Figure 8.30. The planar graph the n 
turns into an alternating link . If G is our planar graph , we will denote th e 
resulting alternating link by L(G). We include an example in Figure 8.30. 

Crossing 

Figure 830 A  plana r graph becomes an alternating link . 

We show tha t th e dichromatic polynomia l o f a  planar grap h G  can be 
obtained a s a  "bracket " polynomia l o f th e correspondin g alternatin g lin k 
L(G). However, th e bracket polynomia l tha t w e use wil l be a  variation o n 
the on e w e sa w i n Sectio n 6.1 , where w e define d th e bracket polynomia l 
for knot and link projections by the equations: 

Rule 1: < 0 > =  1 

Rule 2: < L U  0> =  - (A~ 2 +  A 2)<L> 

Rule 3: < X > =  A < ) ( > +  A ~ 1 < X > 

We now defin e th e so-called squar e bracket polynomial fo r a  knot o r 
link projection. I t has two variables q  and v f an d i t is defined b y the sam e 
three equations, only with different coefficients : 
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Rule 1: 

Rule 2: 

Rule 3: 

[O] =  q 1'2 

[L U O] =  q l/2 [L ] 

[X1 =  q-1/2vl)Q +  [ :i 

The resultin g squar e bracke t polynomia l i s not necessaril y a n invari -
ant fo r knot s and links . Given a  projection o f a  knot o r link, however, w e 
can calculat e th e square bracket , being carefu l no t t o isotope awa y cross -
ings in the projections o f links in the process , as this could chang e the re-
sult. For instance, even though the knot shown in Figure 8.31 is the trivia l 
knot, th e squar e bracke t polynomia l o f thi s projectio n i s not q 1/2. Rather , 
using Rule 3 followed b y Rules 1 and 2, we calculate it as follows: 

[%] = q-1/2v[%] +  [°] 

= q-V 2vqV2 +  qV 2[0] 
= v  +  qV 2q^2 

= v  +  q 

Figure 8.31 A  nontrivia l projection of the trivial knot. 

Exercise 8A8  Calculat e the square bracket polynomial for the two projec-
tions in Figure 8.32. 

Figure 8.32 Fin d the square bracket polynomials for these projections . 
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Amazingly enough , we ca n now se e the dichromatic polynomia l o f a 
planar graph G realized by the square bracket of the associated alternatin g 
link L(G). 

Theorem Z G {q,  v)  =  q N/2[L(G)], where N  i s the number o f vertices of G. 

Proof: W e want to show that the left side of this equation equals the 
right side. First we prove it for graphs without any edges. Suppose, 
first of all, that we have a graph that is just a single vertex (Figure 
8.33). Then the associated link L(G) is just a trivial projection of the 
trivial knot. Hence, the square bracket polynomial for L(G) is q1/2 b y 
the first rule for computing the square bracket polynomial. Multiply-
ing this by qN/2, wher e N =  1 , gives us q. But this is exactly the dichro-
matic polynomial of a graph consisting of a single vertex. Therefore, 
we have proved the theorem in the very simple case that the graph G 
is a single vertex. 

o 
Figure 833 Provin g the theorem for a very simple graph . 

Exercise 8.19  Sho w that the theorem is true for any graph consisting only 
of vertices and n o edges . (Note tha t i f G  is a graph consistin g only of 
vertices, L(G) is the link obtained by taking a set of trivial link compo-
nents, such that one surrounds each of the vertices.) 

Now, let' s se e i f w e ca n us e th e thir d rul e fo r computin g th e squar e 
bracket polynomia l i n orde r t o prov e th e theore m fo r an y grap h G . We 
use inductio n o n th e numbe r o f edge s i n th e graph . W e hav e alread y 
proved th e theore m fo r graph s wit h n o edges . Let' s suppos e w e hav e 
proved i t fo r al l graph s wit h fewe r edge s tha n G . We then prov e tha t i t 
holds for G also. 

Let N be the number o f vertices in G. Define G'  and G " t o be the tw o 
graphs depicte d i n Figur e 8.34 . Sinc e bot h G ' an d G " hav e fewe r edge s 
than G, we know tha t 

Z(G') =  <? N/2[L(G')] an d Z(G")  =  q<**- l)/2[L(G")] 
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A 
Figure 834 Th e dual graphs . 

G' 

Our goa l is to show tha t Z(G) =  <f N/2[L(G)]. However, by the third rul e fo r 
computing the dichromatic polynomia l 

Z(G) =  Z(G' ) +  z?Z(G" ) 
= q N/2[L(G')] +  vqW- 1)/2[L(G")] 
= qV'HlUG')]  +  vq~V 2[UG")]) 
= <f /2[L(G)] 

by th e thir d rul e fo r computin g th e squar e bracke t polynomial . Thi s 
proves our theorem. D 

Let's look at an example. The triangle graph G  in Figure 8.35 becomes 
a trefoi l knot . Accordin g t o th e theorem , th e dichromati c polynomia l o f 
the triangle should be given by 

qN/2im =  q 3'2 [  <§>] =  q 3/2(q-mv [&]  +  [&]) 

= f'Hq-Vhtq-VM®  ]  + [&>])  +  (q- 1/2v{<§)] +  [<&]) ) 

= q 3'Hq-1/2vUi-V2v{q-1/2v[@>] +  [&]) +  {q~mv[Gb 1  +  [  <&])) 

+ (q-VHq-VMQi]  +  [&]) +  (q-1/2v[$>} +  l 0°0]))) 

= q 3/2(q-l/2v(q-1/2v(q-1/2vq +  q1'2) +  (q~^2vqU2 +  q)) 

= v 3 

-,-, -,- , ^  +  <f 1/2) +  (< j .. , 

(<7"""1/2t>(«r1/2V/2 +  q)  + (q- l/2vq +  q 3/2))) 
]q + 3v2q + 3vq2 + ij3 

Figure 8.35 L(G)  i s a trefoil knot . 
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We get exactl y th e dichromati c polynomia l tha t w e compute d earlie r fo r 
the triangle graph. 

So here we have the idea o f a  polynomial forme d a s a  "bracket. " De -
pending o n th e coefficient s w e choos e for th e "bracket " relations , we ca n 
compute polynomials fo r knot s or for graphs . Moreover, this has implica -
tions for statistical mechanics. 

In Sectio n 7.4 , we discusse d th e Isin g model . There , eac h verte x o f a 
planar grap h wa s allowed t o have one of two states . Here, we generaliz e 
that t o a  ne w mode l calle d th e Pott s mode l (Figur e 8.36) . W e stil l wor k 
with a  plana r graph , wher e eac h verte x ca n b e though t o f a s a  particle , 
only now, instead o f only two states, each vertex can have one of q  states, 
where q  is some positive integer . I t is sometimes helpfu l t o think o f the q 
states that a  particle can be in as q possible colors that a  particle can have. 

& 

Figure 836 A  particula r state of the Potts model. 

Amazingly enough , w e sho w tha t i f w e comput e th e dichromati c 
polynomial of the planar graph, and then plug in the right substitution fo r 
the variable v,  the  dichromatic polynomial of the graph will become exactly the 
partition function of  the Potts model A s in Section 7.4 , the partition functio n 
of our graph is defined t o be 

P =  2  e-t($)/kT 

where w e su m ove r al l possibl e state s o f th e system . A s before , k  i s th e 
Boltzmann constan t and T  is the temperature of the system. The energy of 
the system in a particular stat e S  is again given by E(S) . This energy is the 
sum of the interaction energies of the edges: 

E(S) = XE(S /,S;) 

where we sum over al l pairs of vertices that are connected by edges in the 
graph. The state S  is given by the individual state s of the vertices, so S  = 
Si,s2, .  .  .  ,  sn). For this particular model, we choose the interaction energy 
along a n edge to be E(s f, sp =  8(s |V sj), where 8  is again th e so-called Kro -
necker delta function, defined b y 
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R/ r v f l i£a  = b 
8 f e W = ( o i£a*b 

Thus, an edge in the graph contributes to the energy of the particular stat e 
only when the vertices a t its two endpoint s ar e in the same state . (Tha t is 
to say, they have the same color associated to them.) 

Theorem Le t v  -  e~~^ 1/kT) -  1 . Then th e dichromati c polynomia l Z G(q, v) 
for th e plana r grap h G  become s th e partitio n functio n o f th e Pott s 
model on the graph G , with the variable q from th e polynomial givin g 
the number of possible states at each vertex. 

Proof: Startin g with the partition function, we rewrite it in order to 
show it is the dichromatic polynomial . 

P =  £  e~ E(S)/kT 

= % e-XUSi,Sj)/kT 

= XU(e-^ kT^sP 
= 2 n a +  vb(s u Sj)) 

This last line follows from the previous one by writing out the two 
possibilities for the values of the function 8  (8 = 0  or 8 = 1) , and 
seeing that the equality between these two expressions holds in either 
case. We claim that 2 ft  ( 1 + vh(s {, s })) i s exactly the dichromati c 
polynomial in q and v.  To see this, we show that this polynomial 
satisfies the three rules for computing the dichromatic polynomial . 
Since we already have said that the dichromatic polynomial is 
well defined, any polynomial satisfying th e same set of defining rule s 
must itself be the dichromatic polynomial . 

First note that if we have a graph G consisting of just a single ver-
tex and no edges, the partition function P  is given by 

s n o +  i?8(s |Vsy)) = xi 
summing over all states s. Since the vertex can take on q  states, we 
have P(.) =  £  1  =  9 . Hence the partition function doe s satisfy the firs t 
rule for the dichromatic polynomial. Let's check the second rule by 
finding th e partition function o f a graph with one extra vertex that is 
not connected to the rest of the graph by an edge. 

&cerci$e 8.20  Sho w that P(.G)  =  qP(G). 

Finally, we want to check the last rule for the dichromati c 
polynomial. That is, we need to show that the partition functio n 
satisfies 
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P ( X ) =  P ( > <) +  z;P(X ) 

Suppose we have labeled all of the vertices in G by the integers 
{1,2, .  .  .  ,  n}. Let a and b  be two of the integers, which label two 
vertices in our graph G that are connected by an edge e. As in Figure 
8.34, suppose G' is the graph G, except that e has been deleted, and 
suppose G' ' i s the graph G, except that e has been contracted so that 
the two vertices labeled by a and b  have been identified. Our goal is to 
show that P(G) =  P(G')  + vP(G"). Bu t 

P(G) = £n ( l +  z*(s lVs;-)) 

For a given state s of the entire graph, the term in this sum that 
corresponds to s is 

n ( l +vUSi,Sj))  = 
(1 + z;8(s a, sb)) n  ( 1 + vb(s u Sj))  = n (l +  vUs {, s,))  +z?8(sfl, sb)) II ( 1 + vUs {, s y)) 

G,j) * ti,j) # (*,/) # 
(a,b) (a,b)  Term l (a,b ) Ter m 2 

(just applying the distributive law) 

The first term in the preceding equation is exactly the term in the 
partition function o f G' corresponding to the state s. For the second 
term, note that when the two vertices a and b  have the same color in 
the state s, 8(sfl, sb) = 1 . The second term is then just v times the term in 
the partition function o f G" corresponding to the state s. When the 
two vertices a and b  have different color s in the state s, 8(sfl, sb) = 0  and 
the second term disappears. But it's just as well that it disappears, 
since there is no corresponding state for G' ;; the two vertices have 
collapsed to one, and cannot have different colors . 

Thus, summing over all possible states, we have that P(G) = P(G r) 
+ z;P(G") , as we wanted to show. Therefore , since P satisfies the rules 
for computing the dichromatic polynomial, it is the dichromatic 
polynomial Thus, we have seen that the dichromatic polynomial of a 
graph, which can be computed utilizing a skein relation on the 
corresponding alternating link, is in fact the partition function fo r th e 
statistical mechanical model known as the Potts model. • 

Mathematicians and physicists are still working on the connections be-
tween statistical mechanics and knot theory. There remains lots of interest -
ing work to be done. 
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Topology 

0.1 Kno t Complements and Three-Manifolds 

All th e knot s tha t w e hav e looke d a t hav e live d i n three-dimensiona l 
space. Let's call this three-dimensional space R3. Then R2 is a plane and R 1 

is a line. We discuss R4 in the next chapter . 
In Chapte r 4 , we define d th e complemen t o f a  knot , namely , al l o f 

space minu s th e kno t (Figur e 9.1) . It' s a s i f w e ha d drille d a  wormhol e 

Jiii 
Mil 

Figure 91 Th e complement of a knot. 



244 Th e Knot Book 

through spac e where the knot had been . However , keep in mind tha t thi s 
wormhole i s ver y thin , it s thicknes s bein g th e thicknes s o f th e missin g 
knot, which is only one point thick. We denote the complement of the knot 
by R 3 -  K.  The complement o f a  knot i s an example o f a  three-manifold . 
Remember tha t when we talked abou t surfaces in Chapter 4 , we said tha t 
a surfac e wa s a  two-manifold . Th e definin g propert y o f a  two-manifol d 
was that around each point in the two-manifold, ther e was a disk (not nec-
essarily flat)  o f points , als o i n th e two-manifold . So , w e ca n sa y tha t a 
three-manifold satisfie s th e propert y tha t aroun d eac h poin t i n th e three -
manifold, ther e i s a  bal l o f point s tha t i s als o i n th e three-manifold . Th e 
simplest exampl e o f a  three-manifold i s R3, three-dimensional spac e (Fig -
ure 9.2). If we pick any poin t in three-dimensional space , there is a ball of 
points around i t that is also in three-dimensional space . 

Figure 9.2 R 3 is a three-manifold . 

As a  secon d example , yo u ar e sittin g i n a  three-manifol d righ t now . 
The spatia l univers e i s a  three-manifol d (Figur e 9.3) . Pic k an y poin t i n 
front o f you. Then ther e i s a ball of point s aroun d it . The same i s true fo r 
any other point in the universe that we care to pick. Hence, the spatial uni-
verse i s a  three-manifold . (However , ther e ar e tw o caveat s here . Firs t o f 
all, we can' t chec k whethe r point s tha t ar e very fa r awa y hav e thi s prop -
erty, but i t is a reasonable assumption tha t they do. Secondly, one possible 
explanation fo r the phenomenon of black holes is that they are exceptiona l 
points in the universe that d o not have three-dimensional ball s surround -
ing them. They ar e so-called singularitie s i n th e three-manifol d structur e 
of the universe.) 

Just a s ther e ar e man y differen t possibl e two-manifolds , ther e ar e 
many differen t possibl e three-manifolds . An y on e o f the m coul d b e a 
model fo r the universe we live in. Most people picture the universe as R3, 
namely a s three-dimensional spac e that just continues of f foreve r i n ever y 
direction. But of course, at one time people believed tha t the surface of the 
earth was flat, like the plane R2. In fact, the surface o f the earth turned ou t 
to be a  sphere . (I t might hav e been interesting i f i t had turne d ou t to be a 
torus.) S o w e can' t assum e tha t th e univers e i s a s uninterestin g a  three -
manifold a s R3. What are other possibilities ? 
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Figure 9,3 Th e spatial universe is a three-manifold . 

A complement of a knot is also an example of a three-manifold (Figur e 
9.4). In order to see this, we have to show that for any point in the comple-
ment of the knot, there is a ball of points surrounding i t that is also in th e 
complement o f the knot. If we pick a point in three-space tha t i s far awa y 
from th e knot, then it is easy to see that there is a ball of points in the com-
plement o f th e kno t surroundin g tha t point . An y bal l in three-spac e tha t 
contains the poin t an d avoid s the kno t wil l work . I f the poin t w e pic k i n 
the complement i s very close to the missing knot , we wil l just pick a  bal l 
around th e point tha t is very smal l and stil l avoids the knot. The ball wil l 
then be in the complement of the knot. Thus, the knot complement R s -  K 
is a three-manifold . I n particular , thi s means tha t th e universe coul d be a 
knot complement . 

Figure 9.4 A  kno t complement is a three-manifold . 

What would i t mean for the universe to be a knot complement? Would 
it mean that somewhere out in space there was a giant knot? 

Nol I f th e univers e reall y i s a  kno t complement , the n tha t mean s th e 
knot i s missing from space . So we can never see it. It's not there . It woul d 
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be as if the knot were infinitely fa r away. As we headed fo r where the knot 
would be , distance s tha t loo k smal l i n th e pictur e woul d actuall y b e ex -
tremely large and we could never reach the knot (see Figure 9.5). 

Figure 9.5 Th e knot is infinitely fa r away . 

For the last 90 years, mathematicians have been trying to determine al l 
of th e possibilitie s fo r three-manifolds . W e have see n tha t JR 3 i s a  three -
manifold an d tha t kno t complement s ar e three-manifolds . Similarly , lin k 
complements are also three-manifolds. In fact, there are lots of other three-
manifolds. Unfortunately, i t is usually impossible to picture them in three-
space. Jus t a s mos t two-manifold s d o no t exis t i n a  two-dimensiona l 
plane, bu t rathe r exis t i n three - o r four-dimensiona l space , mos t three -
manifolds exis t in four- or higher dimensional space. We describe some in-
teresting examples in the next section. 

Any o f thes e example s o f 3-manifold s ma y i n fac t correspon d t o th e 
3-manifold withi n whic h w e live , which i s t o sa y th e three-dimensiona l 
spatial universe. Recently, cosmologists have become excited over the pos-
sibility tha t w e coul d determin e th e topologica l shap e o f th e univers e 
using the cosmic background radiation . Thi s radiation i s a residual o f th e 
big ban g an d i t i s uniforml y sprea d throughou t th e universe . However , 
with carefu l measurements , on e can discer n a  very sligh t variation i n th e 
microwave backgroun d radiation . Th e hop e i s tha t i f on e discover s th e 
same variation i n two different part s of the sky, this may imply that thos e 
two part s ar e no t actuall y distinct , bu t ar e on e an d th e same , jus t see n 
from tw o differen t sides . Several satellite s wil l be mapping ou t the varia -
tion in radiation ove r the next few years . Perhaps in the very near future , 
we will know the shape of the universe. (See Cornish and Weeks, 1998.) 

9 . 2 Th e Three-Sphere and Lens Spaces 

We wan t t o defin e anothe r three-dimensiona l spac e calle d th e three -
sphere. I t i s th e analo g o f th e two-dimensiona l sphere , onl y on e dimen -
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sion up . Since the two-sphere live s in three-space, it makes sense tha t th e 
three-sphere wil l have t o liv e in four-space . That' s goin g t o make it s de -
scription a  littl e bi t mor e difficult . I t wil l soun d strang e a t first . W e de -
scribe it in two different ways , without mentioning four-space . 

First, notice that the two-sphere can be described a s two curved disks , 
usually called hemispheres , glued togethe r along their boundaries (Figur e 
9.6). Since th e analo g o f a  dis k on e dimensio n u p i s a  soli d ball , we de -
scribe th e three-spher e a s tw o soli d balls , wit h thei r boundar y sphere s 
glued togethe r (Figur e 9.7) . O f course , w e couldn' t actuall y glu e th e 
boundary o f th e firs t bal l t o th e boundar y o f th e secon d bal l i n three -
space, as we couldn' t defor m th e one boundary ont o the other . But that' s 
not to o surprising , a s we sai d tha t th e three-spher e doesn' t liv e i n three -
space. 

Figure 9.6 Th e two-sphere. 

Figure 9.7 Th e three-sphere. 

We think o f th e gluin g abstractly . I f we wer e actuall y standin g insid e 
the firs t ball , w e coul d wal k u p t o it s boundar y an d the n pas s righ t 
through th e boundary int o the secon d ball . Since the tw o boundaries ar e 
glued together , we can pass back an d fort h betwee n th e two balls at will . 
Notice also that thi s description o f the three-sphere satisfie s th e definitio n 
of a  three-manifold (Figur e 9.8). Certainly an y point tha t i s in the interio r 
of either on e o f the two balls i s contained i n a  ball. Also, a point x  on th e 
boundary of one of the two balls is surrounded by a ball B in the manifold , 
half th e bal l B  coming fro m th e firs t o f th e tw o ball s an d th e othe r hal f 
coming fro m th e second . Thes e two half-ball s ar e glued togethe r t o for m 
the whole ball B surrounding the point x. 
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Figure 9.8 Th e three-sphere is a three-manifold . 

Let's give a second description of the three-sphere. We take the points 
in J? 3 together wit h on e extr a point , whic h w e thin k o f a s of f a t infinity , 
since i t does not si t in R 3. We denote thi s one extr a poin t by <» , the sym -
bol for infinity . Bu t just think o f i t as an extra point . We then sa y tha t th e 
three-sphere i s S3 = R 3 U  {<»}. In this second descriptio n o f S 3, we can see 
the two balls making up the first description (Figur e 9.9). The points a dis-
tance less than o r equal to one from th e origin in R3 become the first ball . 
The points a  distance greate r tha n o r equa l t o on e togethe r wit h th e on e 
extra point {<*>}  become the second ball. 

• OD 

Figure 9.9 Th e three-sphere. 

If a point is inside the ball of radius one from th e origin, its distance to 
the origi n i s th e usua l distance . I f a  poin t i s a  distanc e d  tha t i s on e o r 
greater from th e origin, we measure its distance from {oo } to be 1/d.  S o the 
farther ou t a point is in the usual measure of distance, the closer that point 
is gettin g t o th e poin t {<»} . Th e {o° } becomes th e cente r o f a  secon d bal l 
made up of all of the points outside the ball of radius one in R 3. 

Exercise 9A  On e potentia l mode l fo r ou r three-dimensiona l spatia l uni -
verse i s S 3. Assuming tha t w e hav e fas t spac e travel , how migh t w e 
discover tha t ou r univers e i s S 3? What propertie s o f the universe tha t 
we coul d chec k migh t tel l us i t i s S 3? (Ther e is no on e answe r t o thi s 
question; it's a vague essay-type question. ) 
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This last description o f S 3 makes i t clear tha t S 3 and R 3 are very simi -
lar, differin g i n onl y on e poin t {&} . However , th e advantag e tha t S 3 ha s 
over R3 is that S3 is compact. 

When we discussed surface s i n Chapter 4 , we said tha t a  surface wa s 
compact i f i t could be triangulated wit h finitely man y triangles . But wha t 
does it mean to talk about a  triangulation o f a  three-manifold? W e simply 
replace the triangles with thei r analogs , one dimension up , tetrahedra. S o 
a triangulatio n (sometime s calle d a  tetrahedralization)  o f a  three-manifol d 
means a decomposition o f the three-manifold int o tetrahedra, so that pair s 
of tetrahedra eithe r don't intersect or they intersect in a face or an edge or 
a vertex. 

Thus, fo r example , here ar e triangulations o f R 3 an d S 3 (Figure 9.10) . 
Note that when we glue the two balls together on their boundaries to form 
S3, we have t o glue so that vertices go to vertices, edges go to edges, and 
faces g o t o faces . As with a  triangulation , w e assum e tha t th e tetrahedr a 
are rubber and can therefore appea r misshapen . Notice also that the trian-
gulation of R3 has infinitely man y tetrahedra , while the triangulation o f S3 

is made up o f a finite number o f tetrahedra. Given a choice between thes e 
two options , it' s no t surprisin g tha t mathematician s usuall y choos e t o 
work with the three-manifolds tha t can be triangulated with finitely man y 
tetrahedra, since it's always easier to work with finite sets. 

Figure 9.10 Triangulation s of JR3 and S3. 

We say that a  three-manifold i s compact if i t can be triangulated wit h 
finitely many tetrahedra. Most of the time, it's convenient to think of knots 
as living in S 3 rather tha n in R3, throwing i n the extra point {<*>} . Then th e 
knot lie s in a  compact space . However, onc e we remov e th e kno t K  fro m 
S3, th e three-manifol d S 3 -  K  i s no longe r compac t (Figur e 9.11) . Ther e 
is no way t o triangulate th e resul t withou t usin g infinitely man y tetrahe -
dra. Note tha t we could triangulat e i t with infinitel y man y tetrahedra , b y 
utilizing smalle r an d smalle r tetrahedr a t o fil l u p th e spac e a s w e ap -
proached the missing knot. 
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Figure 9.11 S 3 -  K  is not compact . 

How can we visualize the complement of a knot in S3? We could eithe r 
take R 3 -  K  an d thro w i n th e on e extr a poin t {00} . O r w e coul d instea d 
have th e kno t pas s throug h th e poin t {00} , so tha t whe n w e remov e th e 
knot from S 3, we remove the point {00} . But how do we make the knot pass 
through this point at infinity? We place the knot in space so that it goes off 
to infinit y i n tw o directions , resembling a  knotte d lin e (Figur e 9.12) . Re-
member, sinc e th e tw o strand s o f th e knotte d lin e g o furthe r an d furthe r 
away from the origin in three-space, they must be getting closer and close r 
to th e poin t {00} . So we includ e th e poin t {°o } as par t o f th e knot . Now , 
when w e remov e th e kno t fro m S 3, the poin t a t infinit y i s removed an d 
S3 -  K  is exactly the set of points that we see , namely R3 minus this knot -
ted line. 

< ^  \ ^ ^ / • 

Figure 9.12 Th e complement of a knot when the knot goes off to {<»}. 

Exercise 9.2  Dra w the knot 52 so that it passes through {00}. 

Let's loo k a t som e othe r three-manifolds . W e generalize d ou r firs t 
description o f th e three-spher e i n Sectio n 9.2 . There , w e describe d th e 
three-sphere a s two balls glued together along their boundaries. In fact, S3 

is th e onl y manifol d tha t ca n b e obtaine d b y gluin g togethe r tw o ball s 
along their spherica l boundaries. This fact i s difficult t o prove, so we wil l 
accept it on faith . 

Now, instead o f two balls, we glu e two soli d tor i together alon g thei r 
boundaries (Figur e 9.13) . Thi s time , differen t choice s o f ho w t o glu e 
the tw o boundarie s togethe r generate s differen t three-manifolds . Notic e 
that al l o f th e manifold s tha t w e generat e i n thi s wa y wil l b e compact , 
since w e ca n triangulat e eac h o f th e soli d tor i wit h finitely  man y tetra -
hedra. 
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Figure 9.13 Gluin g the boundaries of two solid tori together . 

One wa y o f gluin g th e tw o boundarie s togethe r i s t o glu e a  meridia n 
curve on the first torus boundary to a longitude curve on the second toru s 
boundary. I n orde r tha t ou r gluin g o f th e tw o boundar y tor i identif y 
points one-to-one , each meridian curv e on the boundary o f th e firs t soli d 
torus wil l be force d t o be glued t o a  longitude curv e o n th e boundary o f 
the second solid torus . Surprisingly, this gluing generates S 3 again (Figur e 
9.14). We can see thi s i f we cu t th e firs t toru s ope n alon g tw o meridiana l 
disks. Glue one of the resulting two pieces to the second solid torus so that 
a meridian curv e glues to the longitude curve of the boundary o f the sec-
ond torus . The resultin g objec t i s a  ball . The remainin g piec e o f th e firs t 
solid torus is also a ball. Hence, the manifold obtaine d by gluing in the re-
maining piece is equivalent t o a manifold obtaine d by gluing two balls to-
gether along their boundary Bu t the only such manifold i s S3. 

Figure 9.14 Gluin g two solid tori together in this way yields S3. 

Let's tr y som e othe r wa y t o glu e tw o soli d tor i togethe r alon g thei r 
boundaries. Fo r instance , we ca n send a  meridian o f th e boundary o f th e 
first soli d torus to the meridian o f the boundary o f the second solid torus . 
At the same time , we also send th e longitude on the first toru s to the lon -
gitude o n th e secon d torus . This mean s tha t eac h meridia n curv e o n th e 
first torus is sent to the corresponding meridian curve on the second torus . 
Hence, the boundary o f each meridional dis k in the firs t toru s is glued t o 
the boundary o f a  meridiona l dis k i n th e secon d toru s (Figur e 9.15) . Bu t 
we know that if we glue two disks together on their boundary, the result is 
a two-sphere . Hence , th e pair s o f meridiona l disk s for m two-sphere s i n 
the resultant manifold . 
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Figure 9.15 Gluin g two meridional disks together on their boundaries. 

Let L be a longitude on the first solid torus. At each point x along L we 
have a  two-spher e tha t i s perpendicula r t o L  in ou r ne w manifold , th e 
two-sphere coming from th e union of the meridional disk cutting throug h 
the first soli d toru s a t x  and th e meridional dis k in the second soli d toru s 
that i s glue d t o it s boundary . Henc e w e hav e a  circle' s wort h o f two -
spheres, the circl e being L . We denote th e resulting manifol d b y S 2 X  S1, 
and say that it is the product of a two-sphere S2 with a circle S1. This man-
ifold i s distinct from the three-sphere S3. 

We can think of this description of S2 X S1 as simply being obtained by 
taking a solid torus and "reflecting i t in its boundary" to get a second solid 
torus attached t o the first. We treat the boundary a s a mirror with two car-
bon copies o f the solid torus on each side. Note that the meridional disk s 
on the tw o solid tor i are then glue d togethe r alon g thei r boundaries . Th e 
manifold withou t boundary tha t is obtained by reflecting a  manifold M  in 
its boundary is called the double of M. 

Here is a second way to picture S 2 X S1. Starting with a solid ball, hol-
low ou t a  smalle r bal l fro m it s interior . No w glu e th e inne r boundar y 
sphere t o th e oute r boundar y spher e b y identifyin g eac h poin t o n th e 
inside spher e t o th e poin t radiall y outwar d fro m i t o n th e outsid e 
sphere (Figur e 9.16) . O f course , th e gluin g i s agai n don e abstractl y i n 
our head s rathe r tha n i n a  picture , a s th e resultin g manifol d doesn' t 
exist i n three-space . Th e concentri c sphere s i n thi s pictur e for m th e 
spheres fro m th e previou s description . W e hav e a  circle' s wort h o f 
spheres, since , a s w e trave l ou t alon g a  radius , a t eac h poin t w e hav e a 
concentric sphere . Bu t a t th e las t point , th e spher e ther e i s glue d t o th e 
sphere correspondin g t o th e firs t point , makin g th e radia l interva l int o 
a circle. 

Figure 9.16 Glu e inner sphere to outer sphere to obtain S2 X  S 1. 
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Exercise 9.3  I f this new description of S2 X S1 is giving us the same man-
ifold a s in the previous description , then we should be able to see th e 
two soli d tor i tha t mak e u p th e firs t descriptio n i n th e pictur e tha t 
gives the second description in Figure 9.16. Find a  torus in Figure 9.16 
that cuts the manifold int o those two solid tori. 

This new manifold i s pretty amazing in its own right. For instance, the 
theory o f knots in S2 X S1 is quite different fro m th e theory o f knots in S3. 
As an example, take a look at the knot in Figure 9.17. Note that it is a knot-
ted loop since the north pole of the inner sphere is glued t o the north pol e 
of the outer sphere , making the knotted ar c into a loop. Surprisingly, eve n 
though i t appear s knotte d i t isn' t reall y knotte d a t all . We can und o th e 
snarl within it (Figure 9.18). 

Figure 9.17 A  knot in S2 X S1. 

Figure 9.18 Unknottin g a knot in S2 X S1. 

Exercise 9.4  Sho w tha t th e snar l withi n th e kno t i n S 2 X  S 1 depicted i n 
Figure 9.19 can also be undone. 

Exercise 9.5  Sho w tha t i f th e snar l appearin g i n th e kno t i n Figur e 9.1 9 
were replaced with any other snarl, it could still be undone. 
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Figure 9.19 Untangl e this knot in S2 X S1. 

However, eve n thoug h w e have undon e th e snarl s in these particula r 
knots, we would no t say that they are trivial knots , as they d o not boun d 
disks withi n S 2 X  S 1. Moreover , ther e ar e knot s tha t pas s throug h th e 
spheres mor e tha n onc e tha t canno t be untangle d i n thi s manner . Hence , 
there is a nontrivial theory of knots in S2 X S1. 

So now we have seen two different manifolds , S 3 and S 2 X S1, both of 
which ca n b e obtaine d b y gluin g togethe r tw o soli d tor i alon g thei r 
boundaries. In the first case, we glued a meridian of the first torus to a lon-
gitude o f the second torus . In the second case , we glued a  meridian o f th e 
first toru s to a  meridian o f the second torus . In general , in order t o obtai n 
new three-manifolds , w e ca n glu e th e meridia n o f th e firs t soli d toru s t o 
any nontrivial curve that doesn' t intersec t itself o n the second soli d torus . 
Such a curve is a (p, ^)-curve, where p  is the number o f meridians and q  is 
the number o f longitudes. 

A len s spac e Lip,  q)  i s th e three-manifol d obtaine d b y gluin g th e 
boundaries o f two solid tori together, so that the meridian of the first soli d 
torus goes to a (p, g)-curve on the second soli d torus . We might think tha t 
it matter s wher e th e longitud e o f th e first  soli d toru s goes , but i n fac t i t 
does not. Once we decide where the meridian is going, the resultant mani -
fold i s determined . Th e len s space s ar e al l example s o f compac t three -
manifolds. (Se e (Rolfsen , 1976 ) (i n th e reference s fo r Chapte r 1 ) fo r lot s 
more on lens spaces.) 

Exercise 9.6  Give n a  len s spac e L(p , q),  wha t compac t three-manifol d 
with boundary d o we get if we remove the interior o f a neighborhoo d 
of th e cor e curv e o f on e o f th e tw o soli d tor i tha t mak e u p th e len s 
space? (Hint:  We are removing a solid torus from L(p,  q).) 

c& (Unsolved (problem 

Determine a theory for knots and links in lens spaces by projecting th e 
knot or link onto the torus that splits the lens space into two solid tori . 
Extend th e knot invariant s suc h a s the polynomial s t o this more gen -
eral setting. 
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Instead o f gluin g tw o soli d tor i togethe r alon g thei r boundaries , w e 
could generaliz e an d glu e tw o soli d "handlebodies " alon g thei r bound -
aries (Figur e 9.20) . Th e tw o handlebodie s mus t hav e th e sam e genu s i n 
order for us to be able to glue their boundaries together . Just as we had fo r 
two solid tori , there are infinitely man y differen t way s to glue the bound -
aries of two solid handlebodies together . 

Figure 920 Glu e two solid handlebodies together along their boundaries. 

Amazingly enough , w e hav e jus t describe d every  compact orientabl e 
three-manifold. Eac h on e ca n be obtaine d b y gluin g togethe r th e bound -
aries o f a  pai r o f handlebodies . Fo r som e o f them , w e nee d t o glu e tw o 
handlebodies o f ver y hig h genus , but i f w e allo w arbitraril y hig h genus , 
we wil l obtai n al l three-manifolds . Pu t anothe r way , ever y compac t ori -
entable three-manifold contain s a surface o f some genus n  such that whe n 
the manifold i s cut open along the surface , tw o handlebodies o f the sam e 
genus are the result . Such a splitting of the manifold i s called a  Heegaar d 
splitting. 

Here i s the ide a behin d th e proof. Every compac t three-manifol d ha s 
a finite  tetrahedralization , namel y a  decompositio n int o a  finit e num -
ber o f tetrahedra . Give n a  three-manifol d M  an d suc h a  tetrahedrali -
zation o f M , defin e th e one-skeleto n o f th e tetrahedralizatio n t o b e th e 
union o f al l o f th e vertice s an d edge s o f th e triangulation . I t i s a  grap h 
embedded i n the three-manifold . I f we thicke n i t up, we obtai n a  handle-
body containe d withi n th e three-manifold , whic h w e wil l cal l H\  (Figur e 
9.21). 

Figure 921 Thickenin g up the one-skeleton yields a handlebody. 
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Let's look at a second grap h tha t we can embed in the three-manifold . 
At th e cente r o f eac h tetrahedron , plac e a  vertex . I f tw o tetrahedr a ar e 
glued togethe r alon g a  face, put i n an edge connecting the two vertices a t 
the center s o f th e tw o tetrahedra , th e edg e passin g throug h th e share d 
face. The resulting graph is called the dual graph to the tetrahedralizatio n 
(Figure 9.22) . If we now thicke n up thi s graph , we again obtain a  handle -
body, and i f we thicken i t up enough , this new handlebody wil l fill up al l 
of th e origina l three-manifol d othe r tha n th e point s alread y containe d i n 
Hi. Together , th e handlebody , cal l i t H 2, an d th e origina l handlebod y Hi 
fill al l o f M , an d the y shar e a  commo n boundary . I n othe r words , the y 
form a  Heegaard splitting of M. 

Figure 9.22 Th e dual graph to a tetrahedralization . 

Great! I t sound s lik e w e ar e jus t abou t don e wit h three-manifol d 
theory. W e can no w "list " ever y compac t three-manifold . W e firs t lis t al l 
of th e manifold s wit h genu s zer o Heegaar d splittings . Tha t i s t o say , 
we writ e dow n th e three-sphere . The n w e lis t al l o f th e manifold s wit h 
genus on e Heegaar d splittings . Thi s i s exactl y th e len s spaces . The n 
we lis t al l o f th e manifolds wit h genu s tw o splittings . Continuing i n thi s 
manner, w e ca n lis t al l manifold s wit h Heegaar d splitting s u p t o som e 
genus n. 

Unfortunately, w e cannot give a complete lis t of all of the possibilitie s 
without repeats , sinc e man y o f thes e description s yiel d th e sam e three -
manifold, an d i t is difficult t o tel l which one s do. In fact , n o one has suc -
cessfully liste d al l of th e three-manifolds wit h genu s tw o Heegaard split -
tings. Moreover, i f someone hands u s a  three-manifold describe d i n som e 
manner othe r tha n by a  splitting, we have no way t o determine whic h of 
the three-manifolds i n the list it is. 

(^(Unsolved Problem 
Determine a  method fo r listin g al l o f th e three-manifold s wit h genu s 
two Heegaard splittings , such that each manifold i s listed exactly once 
and suc h tha t on e ca n determin e whic h o f th e manifolds i n th e lis t a 
given manifold wit h a genus two Heegaard splitting is. 
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Q. 3 Th e Poincare Conjecture, Dehn Surgery, 
and the Gordon-Luecke Theorem 

Around th e tur n o f th e century , a  Frenc h mathematicia n name d Henr i 
Poincare (1854-1912 ) aske d a  mathematica l questio n tha t w e ca n para -
phrase a s follows: "I f an objec t look s like a ball and act s like a ball, is it a 
ball?" 

What do we mean by this? Well, let's look at some properties of a ball. 
A ball has one boundary component , whic h i s a sphere . We can ge t fro m 
any one point in the ball to any other without leaving the ball (we say that 
the ball i s connected). Its interior (excludin g th e points on th e boundary ) 
is a  three-manifol d (aroun d eac h poin t i n th e interior , ther e i s a  bal l o f 
points i n th e interior) . I t i s compact , sinc e w e ca n triangulat e i t wit h 
finitely man y tetrahedr a (i n fact , on e tetrahedro n wil l suffice) . Finally , 
notice that if we take any loop inside the ball, that loop can be shrunk to a 
point insid e th e bal l (Figur e 9.23) . Thi s propert y tha t al l loop s ca n b e 
shrunk dow n t o points won' t hol d i n mos t manifolds . Fo r example , tak e 
the three-manifold give n by a solid torus. The core curve cannot be shrank 
to a point without leaving the solid torus. (See Figure 9.24.) We call a space 
simply connecte d i f i t ha s th e propert y tha t al l loop s withi n th e spac e 
shrink to points within the space. 

Figure 923 Loop s shrink to points inside the ball. 

Figure 924 No t all loops shrink to points within a solid torus. 
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Poincare's conjecture can then be stated as follows: 

If there is a three-manifold M  with one boundary component , that bound -
ary component being a sphere, and i f that three-manifold i s compact, con-
nected, and simply connected, then that three-manifold i s a ball. 

This conjecture i s certainly the biggest open question in topology, and on e 
of the biggest open questions in all of mathematics. Most of the best topol-
ogists have tried a t one time or another t o prove or disprove it . Wolfgan g 
Haken worke d o n thi s proble m fo r 1 0 year s befor e h e switche d t o th e 
other mos t well-know n proble m o f th e time , th e Four-Colo r conjecture , 
which, togethe r wit h Kennet h Appel , he solve d i n 1974 . Note tha t al l w e 
have t o d o t o disprove th e Poincare conjectur e i s to come up wit h a n ex -
ample of a three-manifold tha t has all of those properties in the hypothesi s 
of the conjecture, but that is not a ball. 

Poincare's conjectur e i s more commonly state d i n the following form : 

Let M be a compact, connected, simply connected, three-manifold withou t 
boundary. Then M must be the three-sphere S3. 

Exercise 9.7  Sho w tha t thes e tw o formulation s o f Poincare' s conjectur e 
are equivalent . (Hint:  Remember , aroun d ever y poin t i n a  three -
manifold, ther e i s a  bal l i n th e three-manifold . Yo u ca n als o us e th e 
fact that if the interior of a ball is removed from S 3, a ball remains.) 

So how woul d w e g o abou t provin g Poincare' s conjecture ? Well , re -
member tha t ever y compac t connecte d three-manifol d withou t boundar y 
can b e constructe d b y takin g th e unio n o f tw o handlebodie s glue d to -
gether alon g thei r boundaries . S o al l w e nee d t o sho w i s tha t i f a  three -
manifold constructe d i n thi s wa y ha s th e propert y tha t loop s shrin k t o 
points, tha t three-manifol d mus t b e S 3. I n fact , thi s approac h ha s suc -
ceeded i n th e cas e o f genu s on e o r genu s tw o handlebodies . Bu t n o on e 
has ye t show n tha t a  counterexampl e t o th e Poincar e conjectur e couldn' t 
come from gluin g together two handlebodies of genus three or more. 

The concep t o f gluin g tw o handlebodie s togethe r alon g thei r bound -
aries generalize d th e ide a o f gluin g tw o soli d tor i togethe r alon g thei r 
boundaries. We would no w lik e to generalize th e gluing o f tw o soli d tor i 
in a  differen t manner . Here , we glu e on e soli d toru s t o on e kno t exterio r 
along thei r toru s boundarie s (Figur e 9.25) . [ A kno t exterio r i s jus t th e 
complement o f a n ope n soli d toru s knotte d lik e the knot . Th e ope n soli d 
torus that we remove is called a tubular neighborhood o f the knot.] 
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Figure 925. Glu e a solid torus to a knot exterior along their torus bound-
aries. 

If w e glu e i n th e soli d toru s s o tha t a  meridiona l curv e o n th e soli d 
torus goe s t o a  meridiona l curv e o n th e kno t exterior , w e wil l hav e jus t 
filled i n the missing soli d torus , and th e resulting manifol d wil l again b e 
S3. We simply drilled ou t a solid torus from S 3 to get the knot exterior, and 
then we replaced i t to get back S3. However, as we saw in our constructio n 
for len s spaces , we ca n glu e the meridia n o f th e soli d toru s t o any  (p , q)~ 
curve tha t doesn' t intersec t itsel f o n th e torus boundary o f th e knot exte -
rior. For different choice s of (p , ^-curves, we can glue in the solid torus t o 
get various different three-manifolds . 

Given a  knot K  in S 3, the operation o f drilling out a  tubular neighbor -
hood of the knot and then gluing in a solid torus so that its meridian curv e 
goes to a  (p , ^)-curve o n the torus boundary o f th e kno t exterio r i s called 
Dehn surger y (Figur e 9.26). The resul t i s a compac t three-manifol d with -
out boundary. Notice that gluing two solid tori together is a special case of 
Dehn surgery . If we do Dehn surgery on a trivial knot, we remove a tubu -
lar neighborhoo d o f a  trivia l kno t fro m S 3. The kno t exterio r tha t w e ar e 
left with is simply a solid torus. Hence, when we glue a second soli d toru s 
to th e kno t exterior , w e ar e actuall y gluin g tw o soli d tor i togethe r alon g 
their boundaries. So the lens spaces come from Dehn surgery on the trivial 
knot. 

Figure 926. Glu e meridian of solid torus to (p, q)-curve. 
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We could als o do Dehn surger y o n a  link in S 3 (Figure 9.27). For eac h 
component of the link, we drill out a tubular neighborhood o f the link and 
then glu e i n a  soli d torus . Obviousl y sinc e w e hav e s o man y choice s o f 
links and (p , ^)-curves t o glue to , we expec t t o ge t a  lo t o f differen t com -
pact three-manifold s thi s wa y I n fact , w e ge t all  of them . Every  compac t 
connected three-manifol d come s from Deh n surgery o n a  link in S 3. (This 
was prove d b y tw o differen t mathematicians , Raymon d Lickoris h an d 
Andrew Wallace, in the early 1960s , working independently an d using en-
tirely differen t methods. ) Thi s is the basic connectio n betwee n knot s an d 
links and three-manifolds . I f w e coul d reall y understan d knot s an d link s 
and th e Dehn surgeries on them, we would reall y understand all  compact 
three-manifolds! 

U 

Figure 927 Deh n surgery on a link in S3. 

But, just a s in the case of gluing together pair s o f handlebodies t o ge t 
all compact three-manifolds , knowin g tha t we ge t a  complete lis t o f com -
pact three-manifold s b y Deh n surger y i s no t sufficien t t o understan d al l 
such manifolds . W e have n o wa y o f knowin g whic h o f th e manifold s i n 
the lis t ar e actuall y th e same . Fo r instance , jus t restrictin g ourselve s t o 
Dehn surger y o n knots , we coul d as k whethe r ther e coul d b e mor e tha n 
one surgery o n a  particular kno t K  in S 3 that yielde d S 3. Of course , as w e 
already noted, there is always at least one surgery on a knot that yields S3, 
namely th e surger y wher e w e sen d a  meridia n o f th e soli d toru s t o th e 
meridian o f th e knot exterior . But could i t be that a  second surger y send -
ing the meridian of the solid torus to some (p, ^)-curve on the boundary of 
the knot exterior also yields S3? 

Suppose tha t ther e was suc h a  second surgery . Then , afte r gluin g th e 
solid toru s t o the kno t exterio r o f K,  the resul t i s S 3, in both cases . There-
fore, S 3 is made up of this particular knot exterior and a  solid torus, but in 
two different ways . Put anothe r way , there exist two different soli d tor i in 
S3 such that when we remove either one, we are left with the exterior of K. 
Since a solid torus in S3 is always a  tubular neighborhood o f the knot tha t 
is its cor e curve , thi s mean s tha t ther e ar e tw o differen t knot s i n S 3 with 
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the same exteriors . So what w e ar e asking is , "Can ther e be two differen t 
knots Ki and K2 in S3 with the same exterior?" 

Here is a more visceral way to visualize the question. Suppose that the 
three-sphere S 3 i s fille d wit h gree n Jell-O . Suppos e no w w e dril l ou t a 
wormhole throug h th e green Jell-O where the knot K\  is . Could th e gree n 
Jell-O tha t w e ar e lef t wit h b e i n th e sam e shap e a s th e gree n Jell- O w e 
would b e left with i f we drilled ou t the knot K 2 instead? The answer i s an 
emphatic no,  much t o ou r relief . Tw o mathematicians , Camero n Gordo n 
and John Luecke, both at the University o f Texas, proved tha t two distinc t 
knots cannot have the same exterior. Put another way, a knot is completely 
determined b y its exterior. If we know what th e exterior is , we essentiall y 
know what the knot is. 

This questio n ha d firs t bee n pose d b y H . Tietz e (1880-1964 ) i n 1908 . 
The solutio n didn' t com e unti l 1988 . At th e sam e tim e tha t Gordo n an d 
Luecke wer e workin g o n th e problem , Davi d Gaba i o f Caltec h wa s als o 
closing i n o n th e solution . Gordo n an d Lueck e jus t barel y wo n th e rac e 
(Gordon an d Luecke , 1989) . Thei r proo f utilize s result s tha t ar e du e t o 
Gabai. They firs t prove d thei r resul t fo r knot s wit h lo w bridg e numbers , 
solving i t whe n th e bridge numbe r wa s 2 , 3, 4, 5, and 6 . From this , the y 
saw how to do it for all bridge numbers. 

It's hard t o understand th e significance o f this result since it is hard t o 
even conceiv e o f th e possibilit y o f tw o differen t knot s wit h th e sam e 
exterior. Amazingl y enough , ther e ar e example s o f tw o differen t link s 
in S 3 wit h th e sam e exterior . I n Figur e 9.28 , w e se e tw o links , whic h 
are i n fac t distinct . Ther e i s n o deformatio n o f th e on e lin k throug h 
space t o th e other . However , th e tw o lin k exterior s ar e no t distinct , the y 
are homeomorphic . T o se e this , w e utiliz e th e ide a o f homeo -
morphism tha t w e introduce d bac k i n Sectio n 4.1 . Two object s X  an d Y 
are homeomorphi c i f w e ca n cu t X  open , rearrang e th e pieces , an d 
then glu e i t back togethe r s o that an y point s tha t starte d togethe r en d to -
gether, an d th e resul t i s Y . I f w e cu t th e exterio r o f th e first  lin k ope n 
along th e dis k wit h tw o holes , twist on e cop y o f th e dis k 360° , and the n 
reglue th e tw o copie s together , th e resul t i s the secon d lin k complemen t 
(Figure 9.29). 

n o 

Figure 928 Two  distinct links with homeomorphic exteriors . 



262 Th e Knot Book 

Figure 9.29 Seein g the homeomorphism between the two link exteriors. 

Exercise 9.8  Sho w tha t th e two links in Figure 9.30 have homeomorphi c 
exteriors. 

Figure 930 Thes e links have homeomorphic exteriors . 

Gordon and Luecke' s result shows that exactly one Dehn surgery on a 
knot yields S 3. But could there be a second surgery on the knot tha t yield s 
a manifold tha t is very similar to S3? That is to say, could a  second surger y 
yield a  counterexampl e t o the Poincare conjecture , a  compact , connected , 
simply connected, three-manifold tha t is not S 3? A knot that has the prop-
erty that no surgery could possibly yield a counterexample to the Poincare 
conjecture i s said to satisfy Propert y P. 

c®(Unsolved Question 

Show tha t every knot satisfies Propert y P . If completed, this would b e 
a partia l resul t o n the road t o the Poincare conjecture . (Unfortunately , 
the road i s a long one, since, in order to prove the Poincare conjecture , 
we would hav e to prove that no counterexamples t o the Poincare con-
jecture come from Deh n surgery on any link of any number o f compo-
nents.) 

Property P  is known t o hold for certain classe s of knots, including th e 
rational knots . (Remember , rationa l knot s ar e exactl y th e two-bridg e 
knots.) 
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Let's retur n t o thi s proble m o f decidin g whethe r tw o differen t Deh n 
surgeries o n tw o differen t link s ar e actuall y yieldin g th e sam e three -
manifold. In fact, in 1978, Robion Kirby of University of California a t Berke-
ley proved tha t there is a set of simple operations that one can do to a Dehn 
surgery descriptio n o f a  three-manifold , suc h tha t i f tw o differen t Deh n 
surgery description s yiel d th e sam e three-manifold , the y mus t b e relate d 
through a  sequenc e o f thes e operations . Th e manipulatio n o f th e Deh n 
surgery descriptions by these operations is known as the Kirby calculus. 

The operation s utilize d i n th e Kirb y calculu s ar e reminiscen t o f th e 
Reidemeister moves . Instead o f getting us from on e projection o f a knot t o 
another throug h a  sequence o f projections , each o f which come s from th e 
previous on e by a  singl e Reidemeiste r move , th e operation s ge t u s fro m 
one Dehn surgery description of a three-manifold t o another through a  se-
quence of Dehn surgery descriptions, each of which comes from th e previ-
ous on e b y a  singl e operation . Unfortunately , jus t a s i n th e cas e o f th e 
Reidemeister moves , wher e th e numbe r o f move s necessar y t o ge t fro m 
one projection t o another projection o f the same knot has no apriori uppe r 
limit, th e numbe r o f operation s necessar y t o ge t fro m on e Deh n surger y 
description o f a  three-manifol d t o anothe r on e als o ha s n o uppe r limit . 
Hence, th e existenc e o f thes e operation s doe s no t hel p u s t o determin e 
whether or not two surgery descriptions yield the same manifold . 

However, the Kirby calculus does form th e basis for a  means to gener -
alize th e polynomia l invariant s fo r knot s an d link s t o ne w invariant s fo r 
distinguishing three-manifolds . Firs t proposed b y Edward Witten , a theo-
retical physicist a t the Institute for Advance d Stud y in Princeton, the ne w 
invariants fo r three-manifold s com e ou t o f th e theoretica l are a o f physic s 
known a s quantu m field  theory . These ne w invariant s ca n be realize d a s 
certain averages o f link polynomials obtaine d fro m a  given Dehn surger y 
representation of the manifold . 

The approac h t o these invariant s throug h average s o f lin k polynomi -
als is due to two Russian mathematicians name d Nikola i Reshetikhin an d 
V. G. Turaev, the first of whom is now at Berkeley and the second of who m 
is at the University o f Strasbourg in France. The idea i s to create the aver -
ages of the link polynomials in such a way that they are unchanged by the 
operations i n th e Kirb y calculus . Then, sinc e tw o differen t Deh n surger y 
representations o f th e sam e three-manifol d wil l be relate d b y a  sequenc e 
of the Kirby operations, they will both yield the same value for the invari -
ant. Her e i s an exampl e wher e th e field  o f kno t theory , normally though t 
to be a subfield o f the much larger field of topology, has had an impact fel t 
well beyon d it s traditiona l boundaries . Muc h wor k i s currentl y bein g 
done on these invariants. 
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10.1 Picturin g Four Dimensions 

One o f th e basi c motto s o f mathematic s is , "Generalize. " Kno t theor y i n 
three dimension s ha s been interesting , so why no t g o to four dimension s 
and see what happens ? 

In three dimensions, the theory of knots was the theory of knotted cir -
cles. A circle is essentially one-dimensional. If we were a tiny bug on a cir-
cle, it would appea r one-dimensiona l to us. We could go either forward o r 
backward o n the circle and that' s it . We say that a  circle in three-space ha s 
codimension tw o sinc e its dimensionality i s two les s than th e dimensio n 
of the spac e that i t lies in. When w e g o to four-space , we wan t t o look a t 
knotted object s that are the generalization of circles in three-space. We will 
still wan t th e objec t t o hav e codimensio n two . Sinc e w e wil l b e i n four -
dimensional space, our object will need to be two-dimensional. So we want 
to loo k a t knottin g o f surface s (als o calle d two-manifolds ) i n four-space . 
But what surfaces? What surface is the appropriate analog of a circle? 

10 
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One exampl e o f a  circl e i s th e se t o f al l point s tha t ar e a  distanc e o f 
exactly on e fro m th e origi n (0 , 0) in th e xy  plane . To generalize thi s idea , 
let's take the set of all points that are a distance of exactly one from the ori-
gin (0,0,0) in three-space. The result is the sphere (Figure 10.1). 

Figure 10.1 A  sphere is the analog of a circle. 

Exercise 10.1  I f a  spher e i s th e analo g o f a  circl e on e dimensio n up , 
what's the analog of a circle one dimension down ? 

So now, instead o f lookin g a t ho w circle s can kno t i n three-space , w e 
want t o loo k a t ho w sphere s ca n kno t i n four-space . Firs t o f all , let's se e 
how we can picture four dimensions . It might help to think about ways t o 
picture three dimensions first . Th e usual way t o picture three dimension s 
is to use three spatial directions, often calle d the x, y, and z  directions. This 
is the usual Cartesian coordinates (Figure 10.2). 

Uz:tfilx'y'z) 

Figure 102 Picturin g three-space using Cartesian coordinates . 

But now , ho w abou t thi s alternativ e wa y t o pictur e three-space ? In -
stead, we'l l use two spatia l dimensions, x  and z , and th e third dimensio n 
will be time (Figure 10.3a) . We think of three-space as if it had been slice d 
up into planes. As time passes, we move left to right through the sequence 
of planes , seeing wha t appear s o n tha t slic e (Figure 10.3b) . So how wil l a 
sphere look t o us i n thi s view o f three-space ? W e just se e a  plane, and a s 
time passes, we see the different two-dimensiona l slices of three-space. It's 
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like watchin g a  movie . First , th e plan e i s empty . Then , a t tim e t  =  1 , a 
point appears. As time passes, it grows into a circle. The circle continues to 
expand in radius until time t =  3 . After that , it starts to shrink in size unti l 
time t  =  5  when i t becomes a point, and then disappears (Figure 10.4). We 
have just described a  sphere in three-space using only two spatial dimen -
sions. 

AZ 

Time 
-*>t 

(41444 
Time 
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Figure 103 Tim e is a horizontal dimension . 
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Figure 10 A A  spher e in three-space, when one of the dimensions is time. 

Exercise 10.2  Describ e the movie we see if we have a cube in three-space, 
where one of the dimensions is time. Do it both when the cube is par-
allel to the time direction and when it is not (see Figure 10.5). 

3 
Time Tim e 

Figure 10.5 Describ e the movies for these cubes. 
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What if we have a different embedding of the sphere? Our movies can 
become more interesting. For instance, Figure 10.6 depicts a sphere that is 
a bit deformed, and here is its movie. Great flick, huh? And what a plot. 

v If \ H D 

f = 0 ^  =1 ^ = 2 i = 3 ^ = 4 f = 5 ^ = 6 f  = 7 f = 8 ^ = 9 ^ = 1 0 ^ =  11 i = 1 2 

figure 10.6 Th e movie for a deformed sphere. 

Exercise 10.3  Draw the sequence of frames correspondin g to the movie 
for the deformed sphere shown in Figure 10.7. 

Figure 10.7 Th e sphere in Exercise 10.3. 

Exercise 10.4  Draw the sequence of frames correspondin g to the movie 
for the genus two surface shown in Figure 10.8. 

Figure 10.8 Th e genus two surface in Exercise 10.4. 
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We can now employ the same idea to describe four dimensions , using 
three spatia l dimensions , x,  y,  an d z , an d on e tempora l dimensio n t.  A s 
time passes , we wil l see changes in three-space , but we wil l interpret thi s 
as i f w e ar e jus t seein g three-dimensiona l slice s o f four-space , on e dis -
played after th e other. 

In four-dimensiona l space , instea d o f knottin g circle s tha t ar e one -
dimensional, w e kno t sphere s tha t ar e two-dimensional . First , let' s 
look a t a n unknotte d spher e i n four-space . A s w e slic e four-space , th e 
sphere i s slice d u p int o circles . Bu t no w th e circle s ar e i n three -
space, rather than in the xy plane (Figure 10.9). 

PFpT^FPF T 
Figure 10.9. Movi e for a  sphere in four-space . 

We can als o describ e th e three-spher e S 3 in thi s mode l o f four-space . 
Officially, th e uni t three-spher e i s the se t of al l points a  distance one fro m 
the origin in four-space. Tha t i s to say, it is the se t of al l points {(x , y, z, t : 
x2 +  y 2 +  z 2 - f t 2 =  1 } in four-space . Th e equation tha t define s th e three -
sphere can be rewritten as 

x2 +  y 2 +  z 2 t2 

For any value of t less than - 1 o r greater than +1 , this equation has no 
solutions. These values of t  correspond t o the time slices of four-space tha t 
miss the uni t three-spher e entirely . Since we le t the values o f t  vary fro m 
t =  —  1 to £ =  +1 , where each value of t  yields a three-dimensional slic e of 
four-space, this equation simply describes two-spheres in three-space wit h 
radii varyin g betwee n 0  and 1 . For instance , when t  =  \,  th e equatio n o f 
the three-sphere becomes x 2 - f y 2 +  z 2 =  \,  meaning tha t th e three-spher e 
intersects thi s three-dimensiona l slic e o f four-spac e i n a  spher e o f radiu s 

2 

Exercise 10.5  Describ e th e movi e o f th e uni t three-spher e i n four-spac e 
that results from th e preceding paragraph . 
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It is not always convenient to make the fourth dimensio n time, since if 
we wan t t o imagin e ourselve s i n four-dimensiona l space , we woul d lik e 
time t o b e abl e t o pas s normally . S o let' s loo k a t a  secon d wa y t o thin k 
about four-dimensiona l spac e tha t doe s no t involv e time . We will le t th e 
first thre e dimensions agai n be spatial , but thi s time the fourth dimensio n 
will b e a  colo r dimension . A s w e chang e color , w e thin k o f ourselve s 
as movin g i n th e colo r direction . Fo r example , whe n w e ar e a t th e colo r 
yellow, it' s a s i f w e ha d pu t yellow-colore d glasse s on , s o th e three -
dimensional worl d aroun d u s looks yellow. Now imagin e there is a kno b 
on the glasses that allows color adjustment. A s we change the color eithe r 
toward orang e o n th e on e han d o r gree n o n th e other , it' s a s i f w e 
are walkin g i n th e fourt h possibl e directio n i n thi s four-dimensiona l 
world, namel y th e colo r direction . Sa y w e mov e towar d green . No w w e 
are i n th e gree n three-dimensiona l world , whic h look s entirel y dif -
ferent fro m th e yellow world. There are green people here , who were no t 
in th e yello w world . O f course , jus t a s w e canno t suddenl y disappea r 
when w e ar e i n Massachusett s an d reappea r i n California , w e canno t 
jump color s either . I f we want t o ge t from re d t o yellow, we have t o pas s 
through orange and al l of the shades of orange in between red and yello w 
to get there. 

We wil l us e th e colo r mode l o f four-spac e t o sho w tha t ther e ar e no 
knotted loop s i n four-space . Thi s i s why n o on e studie s knotte d loop s i n 
four-space. Ever y knotte d loo p i n four-space i s equivalent t o the unknot . 
Suppose we star t with a  knot in four-space tha t i s entirely green . Then by 
passing th e kno t throug h itsel f som e numbe r o f times , w e ca n alway s 
make i t into the unknot. In fact, the number o f times that we need t o let it 
pass through itsel f i n order t o obtain the unknot i s exactly the unknottin g 
number we introduced in Chapter 3. 

Suppose w e hav e a  poin t x  alon g th e kno t wher e w e woul d lik e 
to pas s th e kno t throug h itself . I n a  shor t stran d o f th e kno t containin g 
this point , chang e th e colo r o f th e kno t t o yellow . W e ar e essentiall y 
pushing thi s stran d o f th e kno t i n th e fourt h colo r direction . Not e 
that w e can' t jus t mak e th e kno t yello w alon g thi s stran d an d leav e 
it gree n everywher e else . Rather , th e stran d mus t graduall y becom e 
yellow. Th e kno t goe s fro m gree n t o green-yello w an d the n eventuall y 
to yello w a s w e approac h th e poin t x  alon g th e knot . Afte r w e pas s 
through x,  th e kno t goe s bac k t o green-yello w an d eventuall y t o gree n 
again. W e depic t thi s fo r th e figure-eigh t kno t i n Figur e 10.1 0 on a  blac k 
and white scale. Thin k of the black as green and the white as yellow. Note 
that thi s sligh t chang e i n th e colo r o f a  stran d o f th e kno t i s a n isotop y 
of th e kno t i n four-space . Tha t i s t o say , i t i s a  rubbe r deformatio n 
of th e knot , wit h th e resultan t kno t stil l equivalen t t o th e origina l 
knot. 
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® •G 
Figure 10.10 Th e figure-eight kno t in colorized four-space . 

But remember, the green and yellow three-dimensional worlds are dis-
tinct. I f w e hav e th e glasse s adjuste d t o green , w e can' t se e yello w ob -
jects—they d o no t exis t i n ou r gree n world . Therefor e w e ca n mov e th e 
yellow strand of the knot right through the green part of the knot. The two 
strands canno t se e eac h other , the y exis t i n differen t three-dimensiona l 
slices of four-space. We can repeat this operation until we have passed th e 
appropriate strand s throug h on e anothe r i n orde r t o unkno t th e knot . 
Then, w e ca n pus h th e yello w strand s bac k int o th e gree n three-dimen -
sional world . Th e resul t i s a  gree n unkno t (Figur e 10.11) . Similarly , an y 
knotted loo p i n four-space i s equivalent t o the unknot i n four-space . Th e 
study o f knotte d loop s i n four-spac e i s completel y boring , sinc e ther e i s 
only on e suc h loop , th e trivia l knot . Therefore , w e wil l loo k a t knotte d 
two-spheres in four-space . 

qp-qp-qp-o- o 
Figure 1011. Th e figure-eight  kno t i s equivalen t t o th e unkno t i n four -
space. 

Exercise 10.6  Explai n why a  sphere in four-space doe s not separate four -
space into two separate pieces (as it does in three-space). That is to say, 
show tha t a  re d bu g tha t i s outside a  re d spher e i n four-spac e coul d 
get inside th e red sphere . (Note tha t we ar e assuming tha t a  bug tha t 
lives in four-dimensiona l spac e can change it s color, but agai n i t can -
not skip colors in between, in going from one color to another.) 

Exercise 10.7  Describ e ho w t o build a  hous e i n four-dimensiona l spac e 
that can keep out such bugs. 
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10.2 Knotte d Sph eres in Four Dimensions 

The sphere in four-space tha t we looked a t in Figure 10. 9 was unknotted . 
It was als o in a  particularly nic e position i n spac e s o that al l of th e slice s 
other tha n th e firs t an d las t wer e circles . I t play s th e rol e fo r sphere s i n 
four-space tha t the unknot played for loops in three-space. 

If w e hav e a n objec t i n four-spac e s o tha t i n th e tim e model , a  poin t 
initially appears, that point grows into a loop and then the loop shrinks to 
a point and disappears , that object is a sphere. However, there was no rule 
that said that the loop had to be unknotted. Let's look at another sphere in 
four-space wit h the movie shown in Figure 10.12 . The slices of this sphere 
are simpl y knots . Although a n interestin g exampl e i n it s ow n right , an d 
the simplest way to knot a  sphere in four-space, thi s example has one ma-
jor flaw. Unfortunately, th e sphere cannot be modeled wit h functions tha t 
are differentiable . A t th e endpoints , wher e th e sequenc e o f knot s shrin k 
down t o point , th e derivative s o f th e function s tha t describ e th e spher e 
cease t o exist . Mathematically , thi s i s a  tremendous disadvantage , an d s o 
most mathematician s restric t themselve s t o manifold s tha t ca n b e de -
scribed by differentiabl e functions . I n fact , th e idea l situation i s when w e 
have a  manifol d describe d b y functions , al l o f whos e derivative s exist . 
Such manifold s ar e called smoot h manifolds . W e would lik e an exampl e 
of a  knotte d spher e tha t i s smooth . I n particular , w e d o no t wan t a  se -
quence o f nontrivia l knot s shrinkin g t o a  point . Let' s tak e a  loo k a t th e 
movie in Figure 10.13 . At particular times , we see several curves come to-
gether a t vertices , and the n ope n u p i n th e opposit e direction . Thes e ar e 
saddle points, just as we had i n the movie for a  sphere in three-space tha t 
was depicted in Figure 10.6. 

I • |&|<s>l<§)|&|&| • I 
Figure 10.12. Th e movie of a knotted two-sphere in four-space . 

i : i : i8iaig|g|g|g|gi:iTr 
Figure 10.13. A  smoot h knotted two-sphere in four-space . 
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How d o w e kno w tha t thi s movie actuall y represent s a  sphere rathe r 
than some other surface? We can use Euler characteristic. (Check for your -
self tha t the Euler characteristi c o f thi s object i s 2. You need t o think a  bit 
about ho w t o calculat e th e Eule r characteristi c fo r somethin g lik e this. ) 
Could i t b e tha t thi s spher e i s unknotted ? Mayb e w e coul d defor m i t 
through four-space i n order t o unknot it . In fact, the answer i s no, there is 
no way to unknot it , but a proof is beyond the scope of this book. 

Exercise 10.8  Dra w a  movi e o f a  ''knotted' " genu s tw o surfac e i n four -
space. 

Exercise 10.9  Dra w a movie of a sphere linked with a torus in four-space . 

10.3 Knotte d Three-Spheres in Five-Space 

I know, it seems a little crazy Two-dimensiona l sphere s in four-space wa s 
getting out there, but this is ridiculous. Amazingly enough, however, if we 
use both the color model and the temporal model at the same time, we can 
picture five-space. 

We will use three spatial dimensions x,  y, and z , one time dimension t , 
and one color dimension c . So if we want to arrange a meeting with some-
one in this five-dimensional  space , we would say , "Okay, I'll mee t you i n 
the building a t the corner o f 76th and Lexingto n (x  and y  coordinates) , on 
the twenty-sevent h floo r ( z coordinate) a t 5:3 0 (t  coordinate) i n th e colo r 
blue (colo r coordinate). " I f w e ar e t o b e abl e t o mov e freel y i n thi s five-
dimensional space , we hav e t o thin k o f ourselve s a s being abl e t o trave l 
in tim e an d i n color , a s wel l a s bein g abl e t o trave l i n space . It' s a s i f 
we coul d chang e ou r colo r t o blu e an d thu s b e i n th e blu e slic e o f five-
space. 

What does a three-sphere in five-space look like? We saw that the two-
dimensional slice s of a  two-sphere i n three-space star t ou t a s a  point tha t 
grows into a circle and the n shrinks to a point again , and i n Exercise 10.5, 
we saw the slices of a three-sphere in four-space star t as a point that grow s 
into a  sphere an d the n shrink s back dow n t o a  poin t again . When w e g o 
up t o five-space,  th e slices of the three-sphere look exactly the same, only 
now they are sitting in four-dimensional slice s of five-space.  We let each of 
these four-dimensiona l slice s have a  different color . So there i s a red slic e 
denoted by R, an orange slice denoted by O, a yellow slice denoted by Y, and 
so forth. Each of these colored four-dimensional slice s of five-space will have 
three spatial dimensions and one temporal dimension (Figure 10.14). 
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Figure 10.14. A  three-spher e in five-dimensional space . 

How abou t a  knotted three-spher e in five-dimensional space ? We will 
have each colored four-dimensiona l slic e of five-space intersec t ou r three -
sphere in a  sphere, point, or not a t all . So for a  particular color , say green , 
we will intersect the three-sphere in a set of time slices that together mak e 
up a  two-sphere, and appea r i n the vertical column of pictures above G ir 
Figure 10.15 . Each of thes e colored slice s tha t i s represented b y a  colum r 
of pictures can intersect the three-sphere in either a point, as red and viole l 
do, a n unknotte d two-sphere , a s fo r instanc e orang e an d indig o do , o r a 
knotted two-sphere , as green does. The yellow and blue columns are tran-
sitional stages between the colors corresponding to unknotted sphere s an d 
the color s correspondin g t o knotte d spheres . Thi s exampl e o f a  knotte d 
three-sphere in five-space is a smooth manifold (Figur e 10.15). 

Note tha t i f we use time as one of our dimension s when representin g 
five-space, we cannot then imagine ourselves moving around in the space. 
We would lik e t o sav e tim e fo r ou r ow n usage . W e could therefor e pic k 
some other attribute to use to keep track o f a  dimension. For instance, w e 
could le t brightnes s b e a  dimension . A s brightness varied , w e woul d b e 
moving i n the "brightness " directio n o f space . We could eve n us e a  hu m 
that was constantly in the background an d tha t go t louder o r softer a s w e 
moved i n th e direction s correspondin g t o th e sound . Wit h attribute s lik e 
these representing the extra dimensions, we can imagine time passing nor -
mally, an d pictur e wha t i t woul d b e lik e t o mov e aroun d i n five-dimen -
sional space. For that matter, we could imagine moving around in space of 
any dimension . 

Exercise 10.10  Figure ou t ho w t o represen t a  four-spher e i n six-space . 
"Draw" an unknotted four-sphere i n six-space. 
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Figure 10.15. A  knotted three-sphere in five-dimensional space . 

Exercise 10.11  Draw a knotted four-sphere i n six-space. 

On that note, we will call it quits. The references a t the end of the book 
contain numerou s article s an d book s fo r furthe r reading . Man y o f the m 
can be read withou t an y additiona l mat h background . However , som e of 
them assum e a  course in topology and/o r algebra , and a  few o f them as-
sume on e o r two course s in algebrai c topology . I  have trie d t o be explici t 
about which these are. Have fun ! 



Knot Jokes and Pastimes 

Jokes 
Marty Scharleman n tell s the stor y o f a  calculu s studen t wh o cam e i n fo r 
help, an d afte r Mart y ha d worke d som e problems , th e studen t said , "S o 
what kind of math do you like?" 

Marty said, "Knot theory." 
The student said, "Yeah, me either. " 

Three strings went int o a  bar an d sa t down a t a  table . The first  strin g 
said to the others, "Is there a waitress here?" 

The second one said, "No, you have to go up to the bar." 
So the first one got up, went ove r to the bar, and sai d to the bartender , 

"I'll have three Scotches." 
The bartender said, "We don't serve your kind in here." 
"What kind?" said the string. 
"Strings, we don't serve strings here." 
So th e strin g wen t bac k t o th e tabl e an d sai d t o th e othe r strings , 

"They won't serve us here." 
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The second string said, "Oh yeah, we'll see about that/ ' 
He go t up , wen t ove r t o th e bar , pounde d o n th e bartop , an d said , 

"Hey bartender, I want three Scotches." 
The bartender said , " I told you r friend , an d no w I' m tellin g you , w e 

don't serve strings here. Now beat it." 
The string went back to the table and shrugged . The third string stood 

up. "Let me handle this," he said. 
He tie d himsel f int o a  nasty tangl e an d pulle d th e strand s ou t a t hi s 

end, creatin g a  wil d mo p o f a  hairdo . The n h e walke d ove r t o th e bar , 
leaned ove r close , and said , "Bartender , I  want thre e Scotches and I  want 
them now." 

The bartende r turne d aroun d an d looke d a t him . H e looke d hi m u p 
and down . The n h e said , "You'r e no t foolin g me , you'r e on e o f thos e 
strings, aren't you?" 

The string looked hi m straigh t back in the eye and said , "Nope , I'm a 
frayed knot. " 

A woman walk s into a bar with a  cow and a  dog. The bartender says , 
"Hey, we don't allow animals in here." 

The woman says , "Oh, but these aren't your usual animals. These ani-
mals are knot theorists." 

"Yeah, right," say s th e bartender. " I have know n som e kno t theorist s 
who I considered animals , but I have yet to meet an animal that I consider 
a knot theorist. " 

"Well, see for yourself," says the woman. 
"Okay." He turns to the dog. 
"Name a knot invariant," he says. 
The dog says, "Arf, arf!!! " (See Section 8.2. ) 
The bartender i s not impressed . He says to the cow, "Okay, you nam e 

a topological invariant. " 
The cow says, "|x, |uu" 
"Who are you trying to kid," says the bartender, "Get outta here." 
As the three of them are dejectedly leavin g the bar, the dog says to the 

cow, "Maybe I should have said the Jones polynomial." 
(Thanks to Joel Hass for making up that one. ) 

Pastimes 

Passing th e Tim e o f Day : Her e i s somethin g toug h t o try . Tak e a  lon g 
piece o f strin g ( 3 ft)—nylon strin g work s th e best—about a  quarte r inc h 
in diameter. Tie a weight at one end, something that is not too heavy. Now, 
holding on e en d o f th e strin g an d lettin g th e weighte d en d han g down , 
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can you jerk the hand holdin g the string so that the free en d o f the strin g 
knots around itself ? 

Knot Games: You may have played this game at camp when you were 
a kid. A large group (5 to 10) of people stand in a circle shoulder to shoul-
der facing inward . Everyone puts their hands in the center and grab s ran -
dom other hands . Once all of the hands have been paired up , the resul t i s 
a human knot or link. The goal is then to untangle it without releasing an y 
pairs o f hands . Bu t th e interestin g poin t tha t ou r counselor s neve r men -
tioned (an d mayb e didn' t realize ) i s tha t th e peopl e ma y hav e forme d a 
nontrivial kno t o r link , i n whic h case , they wil l neve r succee d i n untan -
gling it . This game als o brings u p som e interesting questions . How ofte n 
will a nontrivial knot be formed? How often wil l a link be the result? 

A New Kno t Invariant (or how to get to know people very well , very 
fast): Remembe r i n Section 1. 6 w e discusse d makin g a  knot ou t o f sticks , 
and we suggested tryin g your luck making a knot from th e five sticks cor-
responding to your two forearms, your two upper arms, and an imaginar y 
stick that runs from your left shoulde r to your right. So we have these fiv e 
sticks t o wor k with . Give n a  kno t K,  define th e huma n kno t numbe r o f 
that knot , denoted h(K),  to be the least number o f people necessary , whe n 
holding hands, to make that knot. Interestingly, even though a  knot can be 
constructed fro m te n sticks, it does not mean that the human knot numbe r 
is necessarily 2. Heads and bodies seem to get in the way. 

Try showin g Mtrefoi l knot ) =  2 , h (figure-eight knot ) =  2 . Conjecture: 
These ar e th e onl y tw o knot s wit h huma n kno t numbe r 2 . ( I haven't ex -
plored knot s wit h huma n kno t numbe r 3—ther e aren' t tw o othe r peopl e 
that I know that well.) 

An Unusual Way to Construct a Knot: Take a long thin piece of paper , 
put thre e half-twist s i n it , and the n glu e the ends together . (Thi s is a  par -
ticular embedding o f the Mobius band.) Now, cut it open along the cente r 
line of th e Mobius band . Th e resul t i s a  single band tha t i s twice a s lon g 
and tha t i s tied into a  trefoil knot . Note that thi s is exactly the method at -
tempted b y chemist s t o construc t a  trefoi l molecul e tha t w e discusse d i n 
Section 7.2. 



Appendix 

Table of Knots, Links, and Knot and Link Invariants 

This tabl e contain s pictures , notation , an d invariant s fo r al l th e knot s 
through nin e crossings , the two-component link s through eigh t crossings , 
and th e three-componen t link s throug h seve n crossings . The pictures ar e 
from th e book Knots and Links, by Dale Rolf sen (Berkeley, Calif.: Publish or 
Perish Press, 1976). They were drawn by Ali Roth. 

On th e firs t lin e followin g th e pictur e o f a  give n knot , w e giv e th e 
Alexander an d Brigg s notation fo r tha t kno t (datin g from 1926) , followe d 
by the Conway notation for the knot. (See Conway's paper, which is listed 
in the references fo r Chapte r 2 , for mor e detail s o n thi s notation. ) O n th e 
next line , we giv e th e hyperboli c volum e o f th e kno t complement , with -
out rounding , ou t t o eigh t decima l places . A  volum e o f 0. 0 denote s th e 
fact tha t th e kno t i s not hyperbolic . These volumes com e fro m th e pape r 
[A-H-W], which appears in the references to Chapter 5. 

The las t lin e contain s a  sequenc e o f number s tha t denot e th e Jone s 
polynomial o f th e knot . Th e firs t number , whic h appear s i n th e curl y 
brackets, is the minimum degre e o f the polynomiaL Th e next sequence of 
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numbers gives the coefficients o f the polynomial, beginning with the coef-
ficient of the minimum degree term. For example, {-3} (1-2 3 - 3 3  -11 ) 
denotes the polynomial r3 -  2t~ 2 + 3t_1 -  3  + 3t a - t 2 + t3. The polyno-
mials for knots were provided by Morwen Thistlethwaite. The polynomi-
als for links come from a table produced by Helmut Doll and Jim Hoste in 
"A tabulatio n o f oriente d links, " Mathematic s o f Computation , Vol . 57, 
No. 196(1991), 747-761. Note that many of the polynomials for links have 
fractional exponents. In the case of links, the given polynomial is for a par-
ticular choic e o f orientation s o n th e components . Differen t orientation s 
will often yield different polynomials . See the Doll-Hoste paper for a com-
plete list of polynomials for all orientations. 

110 1) 

6, 42 
3.16396322 

-4} (1-1 1-2 2-1 1) 

4j 22 
2.02988321 

{-2}(1 -1 1 -1 1) 

62 312 
4.40083251 

-5} (1-2 2-2 2-1 1) 

-7K-1 1 

5j 5 
0.0 

-110 1) 

63 2112 
5.69302109 

-3K-1 2-2 3-2 2-1) 

52 32 
2.8281220 

{-6K-1 1-12-1 1) 

7i 7 
0.0 

-10} (-1 1 - 1 1 - 1 1 0 1 ) 

Illustrations from Knots and Links by Dale Rolfsen (Publish or Perish Press, 1976). 
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72 5 2 
3.33174423 

{-8}(-l 1 - 1 2 - 2 2 - 1 1 ) 

73 4 3 
4.59212569 

{2} (1 - 1 2 - 2 3 - 21 -1 ) 

74 31 3 
5.13794120 

{1} (1 - 2 3 - 2 3 - 21 -1 ) 

8i 6 2 
3.42720524 

{-6} ( 1 - 1 1 - 2 2 - 22 - 1 1 ) 

82 51 2 
4.93524267 

{-8} ( 1 - 2 2 - 3 3 - 22 - 1 1 ) 

83 4 4 
5.23868410 

{-4} ( 1 - 1 2 - 3 3 - 3 2 - 1 1 ) 

75 32 2 
6.44353738 

{-9} ( - 1 2 - 3 3 - 3 3 - 1 1 ) 

7e 221 2 
7.08492595 

{-6} ( - 1 2 - 3 4 - 3 3 - 2 1 ) 

84 41 3 
5.50048641 

{-5} ( 1 -2 3 - 3 3 - 3 2 - 1 1 ) 

85 3,3, 2 
6.99718914 

{0} (1 - 1 3 - 3 3 - 43 - 2 1 ) 

77 2111 2 
7.64337517 

{-3} ( - 1 3 - 3 4 - 4 3 - 2 1 ) 

86 33 2 
7.47523742 

{-7} (1 - 2 3 - 4 4 - 43 - 1 1 ) 

Illustrations from Knots and Links by Dale Rolfsen (Publish or Perish Press, 1976). 
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87 411 2 
7.02219658 

-2} ( -1 2 - 2 4 - 4 4 - 3 2 -1 ) 

88 231 2 
*&F 7.80134122 4 

-3} ( - 12 - 3 5 - 4 4 - 3 2 - 1 ) 

mm. 

813 3111 2 
8.53123220 

{-3}(-l 3 - 4 5 - 5 5 - 3 2 - 1 ) 

814 2211 2 
9.21780031 

{-7} ( 1 -3 4 -5 6 - 5 4 - 2 1 ) 

89 311 3 
7.58818022 

{-4} (1 - 2 3 - 4 5 - 43 - 2 1 ) 

.815 21,21, 2 
9.93064829 

10} ( 1 - 3 4 - 6 6 - 5 5 -2 1 ) 

810 3,21, 2 
8.65114855 

{-2} ( - 12 - 3 5 - 4 5 - 4 2 - 1 ) 

816 .2.2 0 
10.57902191 

{-6}(-l 3 - 5 6 - 6 6 - 4 3 - 1 ) 

8U 321 2 
8.28631681 

{-7} (1-2 3 -5 5 - 4 4 - 2 1 ) 

817 .2. 2 
10.98590760 

{-4} (1 - 3 5 - 6 7 - 65 - 3 1 ) 

812 222 2 
8.93585692 

{-4} (1-2 4 -5 5 - 5 4 - 2 1 ) 

818 8* . 
12.35090620 

{-4} (1 - 4 6 - 7 9 - 76 - 4 1 ) 

Illustrations from Knots and Links by Dale Rolfsen (Publish or Perish Press, 1976). 
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819 3,3,2 -
0.0 

{3}(1 01 0 0 - 1 ) 

94 5 4 
5.55651881 

{-11} ( -1 1 - 2 3 - 3 4 - 3 2 - 1 1 ) 

820 3,21,2 -
4.12490325 

{-5} ( - 1 1 - 1 2 - 1 2 - 1 ) 

% 51 3 
5.69844175 

{1} (1-2 3 - 3 4 - 3 3 - 2 1-1 ) 

821 21,21,2 -
6.78371351 

{-7} (1-2 2 - 3 3  - 2 2 ) 

% 52 2 
7.20360076 

-12} ( -1 2 - 3 4 - 5 4 - 3 - 1 1 ) 

% 9  \e5*£  9l  34 2 

0.0 D Q 8.0148614 5 
{-13} ( - 1 1 - 1 1 - 1 1 - 1 1 0 1 ) {-11 } ( -1 2 - 3 4 - 5 5 - 4 3 - 1 1 ) 

92 7 2 (Ifcvfff  9s  241 2 

3.48666014 ^ ^ 3 * ^ 8.1923479 6 
{-10} ( - 1 1 - 1 2 - 2 2 - 2 2 - 1 1 ) {-6 } ( -1 2 - 3 5 - 5 5 - 4 3 - 2 1 ) 

% 6 3 
4.99485640 

{3} (1 - 1 2 - 2 3 - 3 3 - 21 -1 ) 

% 42 3 
8.01681556 

{-12} ( - 1 2 - 4 5 - 5 5 - 4 3 - 1 1 ) 

Illustrations from Knots and Links by Dale Rolfsen (Publish or Perish Press, 1976). 
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9M 33 3 
8.77345728 

{2} ( 1 -2 4 - 5 6 - 5 5 - 3 1-1 ) (3}(1 

9i6 3,3,2 + 
9.88300696 

5 6 - 7 6 - 5 3 - 1 ) 

{0} (1 -2 3 

9U 412 2 
8.28858904 

4 6 - 5 5 - 4 2 - 1 ) {-6} (-13 

917 21312 
9.47458045 

4 6-76-54-21) 

912 4212 
8.83664234 

3 5-66-54-2 1) {-11} ( 

918 322 2 
10.05772963 

- 4 6 - 7 7 - 6 5 - 2 1 ) 

913 321 3 
9.13509403 

{2} ( 1 -2 4 - 5 7 - 6 5 - 4 2 - 1 ) 

9M 4111 2 
8.95498926 

{-3}(-l 3 - 4 6 - 6 6 - 5 3 

919 2311 2 
10.03254744 

{-5} ( - 1 3 - 4 6 - 7 7 - 6 4 - 2 1 ) 

920 3121 2 
9.64430407 

•5 6 - 7 7 - 5 4 - 2 1 ) -2 1 ) {-9 } ( - 1 3 

915 232 2 
9.88549866 

1}(1 - 2 4 - 6 7 - 6 6 - 4 2 -1) {-1}(1 

921 3112 2 
10.18326553 

- 6 8 - 7 6 - 4 2 -1) 

Illustrations from Knots and Links by Dale Rolfsen (Publish or Perish Press, 1976). 
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922 211,3, 2 
10.62072702 

-6 7 -7 7 -5 3 - 1 ) 

923 2212 2 
10.61134829 

-11} ( -1 3 - 5 6 - 8 8 - 6 5 - 2 1 ) 

-1 2 

924 3,21,2 + 
10.83372910 

•4 7 - 7 8 - 7 5 -3 1 ) 

-1 3 

925 22,21, 2 
11.39030514 

-5 7 - 8 8 - 7 5 - 2 1 ) 

{-7} ( 1 -3 5 

928 21,21,2 + 
11.56317701 

8 9 - 8 8 - 5 3 - 1 ) 

929 .2.20. 2 
12.20585615 

6 8 - 8 9 - 7 5 - 3 1 ) 

930 211,21, 1 
11.95452696 

{-5} ( -1 3 - 5 8 - 9 9 - 8 6 - 3 1 ) 

931 211111 2 
11.68631220 

{-7} (1 -4 6 -8 10 -9 8 - 5 3  -1) 

926 31111 2 
10.59584051 

{-2}(-l 3 - 4 7 - 8 8 - 7 5 - 3 1 ) {-2} ( - 14 

932 .21.2 0 
13.09989984 

6 9 -101 0 - 9 6 -31) 

927 21211 2 
10.99998095 

{-5}(-l 3 - 5 7 - 8 9 - 7 5 - 3 1 ) 

Illustrations from Knots and Links by Dale Rolf sen (Publish or Perish Press, 1976). 
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933 .21. 2 % 4 = W K 93 8 222 

13.28045563 W  12.9328587 0 
{-5} ( - 1 3 - 6 9  -10 1 1 - 9 7  -4 1 ) {-11 } ( - 1 3 - 6 8  -10 1 0 -8 7  -3 1 ) 

934 8*2 0 $LMJ ^ 9s 9 2 : 2 : 2 ° 
14.34458138 v s ^ ^ s ^ 12.8103100 0 

-5} ( -1 4  -7 1 0 -12 1 2 -10 8 -4 1 ) {-1 } ( 1 -3 6  -8 1 0 -9 8 - 6 3  -1 ) 

935 3,3, 3 
7.94057924 

{-10} ( - 1 1- 2 3 - 3 4 - 3 2 - 1 1 ) 

^40 * 

15.01834285 
{-7} ( 1 -4 8  -1113 -1 3 1 1 - 8 5  -1 ) 

936 22,3, 2 
9.88457865 

{0}(1 - 2 4 - 5 6 - 6 6 - 4 2 - 1 ) 

937 3,21,2 1 
10.98944959 

{-5} ( - 1 3 - 4 7 - 8 7 - 7 5 - 2 1 ) 

941 20:20:2 0 
12.09893602 

{-6} ( 1 - 3 5 - 7 8 - 8 8  - 5 3 - 1 ) 

942 22,3,2 -
4.05686022 

{-3}(1 - 1 1 - 1 1 - 1 1 ) 

943 211,3,2 -
5.90408585 

{0} ( 1 - 1 2 -2 2 - 2 2 - 1 ) 

Illustrations from Knots and Links  by Dale Rolf sen (Publish or Perish Press, 1976). 
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944 22,21,2 -
7.40676757 

{-5}(-l 2 - 2 3 - 3 3 - 2 1 ) 

945 211,21,2 -
8.60203116 

{-8}(-l 2 - 3 4 - 4 4 - 3 2 ) 

r } ( - l - l ) 

0l 0 
0.0 

2\ 2 
0.0 

[il ( - 1 0  - l ) 

946 3,3,2 1 -
4.75170196 

{-6} ( 1 - 1 1 -2 1  -1 2 ) 

4? 4 
0.0 

U H - i 1 - 1 0 - 1 ) 

947 8*-2 0 
10.04995786 

{-2} ( - 1 3 - 3 5 - 5 4 - 4 2 ) 

948 21,21,21 -
9.53187983 

{-1} ( 1 - 3 4 - 4 6 - 4 3 - 2 ) 

949 -20:-20:-2 0 
9.42707362 

{2} ( 1 -2 4 -4 5 - 4 3 - 2 ) 

5\ 21 2 
3.66386237 

(1 -2 1 - 2 1  -1 ) 

6i 6 
0.0 

{|}(-1 0 - 1 1 - 1 1-1 ) 

61 3 3 
4.05976642 

{ f } ( - l 1 - 2 2 - 2 1 -1 ) 

Illustrations from Knots and Links by Dale Rolfsen (Publish or Perish Press, 1976). 
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| } ( - 1 1  -3 2 - 2 2 - 1) 

6| 22 2 
5.33348956 

7\ 41 2 
4.74949998 

(1 - 2 2 - 3 2 - 21 -1 ) 

7\ . 2 
8.99735194 

(f) ( - 1 3 - 4 4 - 5 3 - 3 1 ) 

72
7 3,2,2 -

0.0 
{f}(l - 1 0 - 1 0 - 1 ) 

7\ 3112 
6.59895153 

3 3-42-21) 

7\ 232 
6.13813878 

{-}(-! 1-33-32-2 1) 

"i1} (1 - 1 1 -2 1 -2) 

7\ 21,2,2 -
3.66386237 

%\ 8 
0.0 

( -1 0 - 1 1 - 1 1 - 1 1-1 ) 

7\ 3,2,2 
6.13813878 

2 3-32-31 -1) 

7\ 21,2,2 

7.70691180 
4 3-43-21) 

8| 53 
4.85117075 

(|}(-1 1-22-33-21 -1) 

Illustrations from Knots and Links by Dale Rolfsen (Publish or Perish Press, 1976). 
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8§ 42 2 
6.94755544 

{!}(-! 1 - 3 3 - 4 4 - 3 2 - 1 ) 

85 22,2, 2 
8.96736084 

{ f } ( - l 2 - 4 5 - 5 4 - 4 2 - 1 ) 

85 32 3 
7.51768989 

82
10 211,2, 2 

9.65949854 
(1} ( -1 2  -4 4  -4 4  -3 1  -1) {f } ( -1 3 - 5 5 - 6 5 - 4 2 -1 ) 

81 312 2 
7.89459448 

8?! 3,2,2 + 
8.79334560 

} ( -1 2 - 4 4 - 5 4 - 3 2 -1 ) {f } ( -1 1 - 4 4 - 5 5 - 4 3 -1 ) 

jT\ 
mmmw 
TT-JT Sl  24 2 

^ = ^ 6.5517432 8 
{ f } ( - l 1  -3 3 - 4 3 - 2 2 - 1 ) 

8̂ 2 21,2,2 + 
9.65949854 

T } d - 2 4 - 6 5 - 6 4 - 3 1 ) 

82
7 2121 2 

8.83066495 
8?3 -2 1 
11.37077417 

'} ( -1 2 - 4 4 - 6 5 - 4 3 -1 ) {f } (1 - 4 5 - 7 7 - 75 - 3 1 ) 

8| 21111 2 
9.67280773 

82
u .2: 2 

10.66697913 
4 ( 1 - 3 4 - 6 6 - 6 4 - 3 1) {f } ( -1 3 - 6 5 - 7 6 - 4 3 -1 ) 

Illustrations from Knots and Links by Dale Rolfsen (Publish or Perish Press, 1976). 
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3?5 22,2,2-
3.66386237 

- 2 1 - 1 1-1 ) 

3216 211,2,2-
5.33348956 

2 2 - 2 1 -1 ) 

I K 1 - 2 3 

6\ 2,2, 2 
5.33348956 

1 3 - 1 1 ) 

63
2 . 1 

7.32772475 
2 4 -2 3 - 1 ) 

63
3 2,2,2 -

0.0 
} (1 0 1  0 2) 

7\ 2,2,2 + 
7.70691180 

3 4 - 3 4 - 1 1 ) 

Illustrations from Knots and Links by Dale Rolfsen (Publish or Perish Press, 1976). 
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trefoil knots is exactly In 4 - 4 and we determined the exact number for the (p,p-l)-torus 
knots using curvature. 

Appel, K. , an d W . Haken. 1977 . Every plana r ma p i s fou r colorable , I  and II . 
Illinois J. Math.  21:429-567 . 

This pair of papers gives the solution of the renowned four-color theorem, that any 
planar map can be colored using only four colors so that two countries that share a 
border will never have the same color. The authors reduce the problem to thousands of 
special cases that are then checked by a computer. It does bring up the interesting 
question, how do you know that the computer program is completely free of bugs? 

Appel, K. , an d W . Haken. 1977 . The solutio n o f th e four-color-ma p problem . 
Sci Atner.  (September):108-121. 

A readable account of the idea of the proof of the four-color theorem . 
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Ashley, C. 1944. The Ashley Book  of Knots. New York : Doubleday. 

An amazing book . Everything you eve r wante d t o know abou t knot s fro m th e non -
mathematical point of view. Beautiful illustrations of innumerable knots. A treasure, if 
you can find it. 

Burde, G., and H. Zieschang. 1986. Knots. Berlin: de Gruyter . 

This is one of only a few books on the mathematical theory of knots. Lots of interesting 
material an d a  super b reference , bu t i t doe s assum e a  mathematicall y sophisticate d 
reader familiar with algebraic topology. 

Crowell, R . H. , an d R . H . Fox . 1963 . Introduction  to  the  Knot  Theory.  Ne w 
York/Berlin: Springer-Verlag . 

This was one of the few books on knot theory for many years. It gives a wonderful in -
troduction to the fundamental grou p of the complement of a knot. 

Fox, R. H. 1962. A quick trip through knot theory. In Topology of 3~manifold$ and 
Related Topics, 120-167. Englewood Cliffs , N.J.: Prentice-Hall. 

An easy-to-rea d introductio n t o th e stat e o f kno t theor y a t th e time . Recommende d 
reading for those who have a familiarity with algebraic topology. 

Gordon, C . McA. 1978 . Some aspect s o f classica l kno t theory . In Lecture  Notes 
in Mathematics, 685:1-60 . New York/Berlin : Springer-Verlag . 
An interesting overview that predates the new polynomials. 

Haken, W. 1961. Theorie der Normalflachen. Acta  Math.  105:245-375 . 

Here is the paper where Haken gives an algorithm to determine whether a  given knot 
is the unknot. Unfortunately , th e alogorithm remain s too complex to use in even th e 
simplest cases. 

Jin, G . T . 1997 . Polygon indice s an d superbridg e indice s o f toru s knot s an d 
links. /. Knot Theory  Ramifications 6, no. 2,281-289. 
Here, the autho r determine s th e exac t stic k number fo r essentiall y hal f o f th e toru s 
knots using superbridge number. 

Kauffman, L . 1987 . O n knots . I n Annals  of  Mathematical  Studies,  No . 115 . 
Princeton, N.J.: Princeton Univ . Press. 
A compendium o f interesting tidbits about knots. This book contains enough to keep 
you thinking for a long time. 

Kirkman, T . P . 1865 . The enumeration , descriptio n an d contructio n o f knot s 
with fewer tha n 1 0 crossings. Trans. R. Soc. Edinburgh 32:281-309 . 

One of the very first papers on knots. Not an easy read, due to Kirkman's style. 

Little, C. N. 1900. Non-alternate +  -  knots . Trans. R. Soc. Edinburgh, 39:771-778. 

Another early paper on knots. Remember how hard Little worked. 
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Livingston, C . 1993 . Knot theory.  Cams Mathematica l Monograph s 24 . Wash -
ington, D.C.: Math. Assoc. Amer. 
This book is a readable introduction to knot theory, covering a predominantly distinc t 
set of topics. Assumes a background through linear algebra. 

Neuwirth, L. 1979. The theory of knots, Sci. Amer. 140 flune):84-96. 
An easily read introductio n t o knot theory , preceding by five year s the amazing dis -
coveries of the new knot polynomials. 

Przytycki, J. 1991 . A histor y o f kno t theor y fro m Vandermond e t o Jones, Pro-
ceedings of the Mexican National  Congress  of Mathematics, November . 

A shor t readabl e histor y o f th e field , includin g wor k don e befor e th e tim e o f Lor d 
Kelvin. 

Reidemeister, K . 1932 . Knotentheorie . I n Eregebnisse  der Matematik  und  ihrer 
Grenzgebiete (Alte  Folge  0 , Band  1,  Heft  1).  Berlin:Springer . (Reprin t Berlin : 
Springer-Verlag, 1974) . (Englis h transl , L . Boron , C . Christenson , an d B . 
Smith, BCS Associates, Moscow, Idaho, 1983.) 
Reidemeister introduces the Reidemeister moves and proves that two knots are equiv-
alent if and only if we can get from a projection of the first to a projection of the second 
using the Reidemeister moves. It also includes some braids, the Alexander polynomial, 
and knot groups. 

Rolf sen, D. 1976. Knots and links. Berkeley, Calif.: Publish or Perish Press. 

The Bible of kno t theory . Where man y o f th e recen t workin g kno t theorist s learne d 
their knot theory. A fascinating book written in a readable style , although i t does as-
sume a familiarity with algebraic topology. It predates the new polynomials. A second 
edition has recently been published. 

Tait, P. G. 1898 . On Knot s I , II, III. In Scientific  Papers, Vol. 1: 273-347. London : 
Cambridge Univ . Press. 

More early work on the classification of knots. 

Thomson, W . H. 1869 . On vorte x motion . Trans.  R. Soc.  Edinburgh 25:217-260 . 

This is the paper where Lord Kelvin (aka W. H. Thomson) proposes that knotted vor -
tices in the ether serve as a model for atoms. As Maxwell put it at the time, "It satisfies 
more of the conditions than any atom hitherto considered/ ' 

Chapter 2 

Conway, J. H. 1970 . On enumeratio n o f knot s an d links , and som e o f thei r al -
gebraic properties . Computational  Problems  in Abstract  Algebra,  Proc.  Conf Ox-
ford 2967:329-358 . Oxford: Pergamon . 

Conway's tabulation of knots and links through eleven crossings. It includes descrip-
tions of his notation for knots. A key paper in the history of knot theory. 
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Dowker, C . H., an d M . B . Thistlethwaite. 1983 . Classification o f kno t projec -
tions. Topol. Appl.  16:19-31 . 
An explanation of the Dowker notation for knots. 

Ernst, C, an d D . W. Sumners. 1987 . The growth o f the number o f prime knots . 
Proc. Cambridge Phil Soc.  102:303-315. 

Proves that the number of prime knots of crossing number n grows exponentially with n. 

Hoste, J. , Thistlethwaite , M. , Weeks , J . 1998 . The Firs t 1,701,93 6 Knots , Math. 
Intell Vol . 20, No. 4,33-48. 

A tabulation o f al l o f the knot s o f 1 6 or fewe r crossings , determined b y tw o group s 
working independently. 

Thistlethwaite, M . B . 1985 . Knot tabulation s an d relate d topics . I n Aspects  of 
Topology, edited b y I . M . Jame s an d E . H . Kronheimer:l-76 . London : Cam -
bridge Univ. Press. 

An interesting survey paper, with a  lot of information abou t knot tabulation. Recom-
mended reading. 

Chapter 3 

See the books in the readings for Chapte r 1 . 

Bernhard, J . 1994 . Unknotting Number s an d Minima l Kno t Diagrams , Journal 
of Knot Theory and its Ramifications, Vol. 3, No. 1(1994)1-5. 

Here, the single previous example of a knot whose unknotting number is not realized 
in a minimal crossing projection is extended to an infinite class of knots. 

Kanenobu, T . an d H . Murakami . 1986 . Two-bridg e knot s wit h unknottin g 
number one . Proc. Amer. Math. Soc.  98(3):499-502. November . 

Kanenobu and Murakami determine exactly which two-bridge knots have unknotting 
number one . In particular, they giv e the firs t proo f o f the fac t tha t 8 3 has unknottin g 
number 2. 

Kirby, R . 1993 . Problems i n Low-dimensiona l Topology , i n Geometri c Topol -
ogy, ed. by W. Kazez, American Mathematical  Society/International  Press,  35-473. 
Here is a compendium of annotated open problems in low-dimensional topology, and 
its subset knot theory , as of 1993 . A great place to look for open problems, but man y 
take a graduate level background in mathematics to understand. 

Nakanishi, Y. 1983. Unknotting numbers and knot diagram s with the minimu m 
crossings. Mathematics Seminar  Notes, 11:257-258 . Kobe, Japan: Kobe University . 
An early discussion of fc-moves and related conjectures . 

Scharlemann, M. 1985 . Unknotting numbe r on e knots ar e prime, Invent. Math. 
82:37-55. 
Here i s the firs t proo f tha t a  composite kno t canno t be turned int o a  trivia l kno t b y 
only one crossing change. This is a difficult t o read, technical paper. 
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Chapter 4 

Firby, P. A., and C . F. Gardiner. 1982 . Surface Topology. Chichester , England : El -
lis Horwood (distribute d by Wiley) . 
This book gives a nice readable introduction t o surfaces, going into a  lot more dept h 
than we do in Chapter 4. 

Gabai, D. 1986. Genera of the alternating links. Duke Math. Journal 53(3):677-681. 
The simplest proof o f the fact tha t the genus of an alternating knot or link is realized 
by the Seifert surface obtained by applying Seifert's algorithm to a reduced alternatin g 
projection. 

Massey, W . S. 1967 . Algebraic Toplogy: An Introduction.  Harbrac e Colleg e Mat h 
Series. New York : Harcourt, Brace & World. 

This book gives the classification o f surfaces. Although the rest of the book assumes a 
certain amount of background , no previous background is necessary to read the chap-
ter o n surfaces . I n addition , th e book include s th e fundamenta l grou p an d coverin g 
space theory, if you are at the point where you want to learn this material. 

Moriah, Y . 1987. On th e fre e genu s o f knots , Proc.  Amer. Math.  Soc.  99, no. 2 , 
373-379. 
Here is where it is first proved that the minimal genus Seifert surface of a knot needn't 
come from applying Seifert's algorithm to some projection of the knot. 

Seifert, H. 1934. Uber das geschlect von knoten. Math. Ann.  110:571-592 . 
Here is where the idea of a Seifert surface for a knot is introduced. 

Chapter 5 

Adams, C , M . Hildebrand , an d J . Weeks . 1991 . Hyperboli c invariant s o f 
knots and links . Trans. Amer. Math. Soc.  (l):l-56. 

This paper give s the firs t lis t o f hyperboli c volume s fo r knot s through te n crossing s 
and link s throug h nin e crossings . "Pictures " o f th e hyperboli c structure s fo r som e 
knots and links are included. 

Adams, C, J . Brock, J. Bugbee, T. Comar, K. Faigin, A. Huston, A . Joseph, an d 
D. Pesikoff. 1992 . Almost alternating links. Topol. Appl. 46:151-165 . 

Here, we invented the concept of almost alternating links, and extended certain results 
known for alternating links to this new category. 

Adams, C. 1994. Toroidally alternating knots , Topology, Vol. 33, No. 2,353-369 . 

Here is where the concept of a toroidally alternating link is introduced. 

Birman, J . S . 1976 . Braids , link s an d th e mappin g clas s groups . Ann.  Math. 
Studies No. 82.  Princeton, N.J.: Princeton Univ. Press. 

The basic referenc e fo r braids , assumin g a n algebrai c background an d interest . Pre -
dates all of the new polynomials. 
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. 1991. Recent developments i n braid an d lin k theory. Math. Intel!.  13(1): 
52-60. 

A readable introduction to braids; however, with the assumption that the reader is fa-
miliar wit h groups , representations , an d presentations . Discusse s relation s wit h th e 
new polynomials. 

Birman, J., Hirsch, M. 1998 . A new algorith m fo r recognizin g th e unknot , Ge -
ometry and Topology, Vol. 2,175-220. 

The authors utilize an algorithm based on braids to decide if a given knot is trivial. A 
computer program based on the algorithm is in the works. 

Hayashi, C . 1995 . Links with alternatin g diagram s o n close d surface s o f posi -
tive genus, Math. Proc.  Cambridge  Philos. Soc. 117 (1995), no. 1,113-128. 
Here, the author looks at alternating knots on tori and higher genus surfaces. 

Hayashi, C . 1994 . Links with alternatin g diagram s o n close d surface s o f posi -
tive genus. Preprint . 

Independent wor k on toroidally alternating knots as in Adams, 1992 and thei r exten-
sions to links that are alternating on higher genus surfaces. 

Menasco, W. 1984. Closed incompressible surfaces i n alternating knot and lin k 
complements. Topology  23(l):37-44. 

Proves that a  prime alternating link that i s not a  two-braid i s hyperbolic. Assumes a 
technical proficiency in low-dimensional topology. 

Meyerhoff, R . 1992 . Geometric invariant s fo r 3-manifolds . Math.  Intell.  1:37-53 . 

This article is an excellent introduction to both the topology and geometry of surface s 
and three-manifolds . I t give s a  carefu l descriptio n o f hyperboli c spac e an d wha t i t 
means for a  surface o r three-manifold t o be hyperbolic. It then goes on to discuss in-
variants of hyperbolic manifolds such as the volume. 

Murasugi, K . 1991 . On th e braid inde x o f alternatin g links . Trans.  Amer. Math. 
Soc. 326(l):237-260, July. 

Among numerous other interesting results, this paper contains the proof that the cross-
ing number of a (p, ^)-torus knot is p(q—l), where p>q^2. 

Ohyama, Y . 1993 . On th e minima l crossin g numbe r an d th e brai d inde x o f 
links. Can. J. Math. 45(1):117-131. 
The author prove s tha t c(k)  > 2(&(JC)-1) , where c(k)  is the minimal crossin g numbe r 
and b(k) is the braid index. 

Soma, T . 1987 . O n preimag e knot s i n S 3, Proc.  Amer.  Math.  Soc.  100(3) : 
589-592. 
This paper proves that if two satellite knots, both coming from the same knot in an un-
knotted soli d torus , are equivalent, then the two corresponding companion knot s are 
equivalent. 
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Thurston, W . The  Geometry  and  Topology  of Hyperbolic  3-manifolds.  Princeton , 
N.J.: Princeton Univ. Press. In press. 
In 1978, copies of the notes from a  course that Thurston taught were disseminated t o 
the mathematical community, and they have formed th e basis for the field of topology 
known a s hyperbolic three-manifol d theory . Those notes have been du e ou t i n book 
form for some time now, and should apear in the near future . 

Thurston, W. , an d J . Weeks . 1984 . Th e mathematic s o f 3-dimensiona l mani -
folds. Sci  Amer.  (July):108-120 . 
This article gives a nice introduction to the geometry of three-manifolds, in particular, 
hyperbolic three-manifolds. Recommended reading. 

Weeks, J. 1985. The Shape of Space. New York: Dekker. 
This book is an excellent elementary introduction to the topology and geometry of sur-
faces and three-manifolds . I t explains the ideas behind hyperboli c surfaces . No back-
ground is assumed. 

Yamada, S. 1987. The minimal number o f Seifert circle s equals the braid index . 
Invent. Math.  88:347-356 . 
This paper proves that the least number of Seifert circles in any projection of a knot is 
exactly the braid index of the knot. 

Chapter 6 

Adams, C, Dorman , R. , Foley, K., Kravis, J. 1999. Alternating Graphs,  Journal of 
Combinatorial Theory, Series B 77, 96-120. 

Here we extend results for alternating knots and links to alternating graphs. 

Alexander, J . W. 1928 . Topological invariant s o f knot s an d links . Trans.  Amer. 
Math. Soc.  30:275-306. 

The invention of the very first polynomial invariant for knots. 

Birman, J . S . 1985 . On th e Jone s polynomia l o f close d 3-braids . Invent.  Math. 
81:287-294. 

Looks at the Jones polynomials for closed braids of three strings. 

Brandt, R. D., W. B. R. Lickorish, and K . C. Millett. 1986 . A polynomial invari -
ant for unoriented knot s and links . Invent. Math.  84:563-573 . 
Introduces a new polynomial for knots and links (which we do not discuss in this book.) 

Franks, J. , an d R . Williams . 1987 . Braid s an d th e Jone s polynomial . Trans. 
Amer. Math. Soc.  12:303:97-108. 

Relates braid index to the exponents of the HOMFLY polynomial (called here the gen-
eralized Jones polynomial). 

Freyd, P. , D. Yetter, J. Hoste, W. Lickorish, K . Millett, an d A . Ocneau. 1985 . A 
new polynomia l invarian t o f knots and links . Bull. Amer. Math. Soc.  12:239-246. 

This is the joint announcement by four differen t group s of their simultaneous discov -
ery of a 2-variable polynomial that generalized the Jones polynomial. 
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Jones, V. F. R. 1985 . A polynomia l invarian t fo r knot s an d link s vi a Vo n Neu -
mann algebras . Bull. Amer. Math. Soc.  12:103-111. 

This is the original announcement by Jones of his discovery of a  new polynomial fo r 
knots and links. 

Kanenobu, T . 1986 . Infinitel y man y knot s wit h th e sam e polynomial . Proc. 
Amer. Math. Soc.  97:158-161 . 

A readable proof tha t there are infinitely man y distinct knots with the same HOMFLY 
polynomial. 

Kauffman, L . 1983 . Combinatorics an d kno t theory . Contemp.  Math. 20:181-200 . 

In this paper, the author introduces the concept of alternative links, a category that en-
compasses both alternating knots and torus knots. He then proves that the Seifert sur -
face o f an alternative link that comes from applyin g Seifert' s algorith m to an alterna -
tive projectio n i s a  minima l genu s Seifer t surface , generalizin g th e resul t tha t wa s 
previously known for alternating and torus links. 

. 1988 . Ne w invariant s i n th e theor y o f knots . Amer.  Math.  Mon. 
195-242, March. 

A nice survey article explaining the relationship between the bracket polynomial an d 
the Jones polynomial, in addition to other interesting material. 

Lickorish, W . B . R. , an d K . C . Millett . 1987 . A  polynomia l invarian t fo r ori -
ented links . Topology 26:107-141. 
This is the authors ' proof o f the existence o f the HOMFLY polynomial, which was si-
multaneously discovered by the authors and by Freyd and Yetter; Ocneau; Hoste; and 
Przytycki and Traczyk. 

. 1988 . The ne w polynomia l invariant s o f knot s an d links . Math.  Mag. 
61(1)13-23, February. 
This is a beautifully writte n introduction to the two-variable polynomials that general-
ize the Jones polynomial. This article is highly recommended reading. 

Menasco, W. , and M . Thistlethwaite . 1991 . The Tai t Flypin g Conjecture . Bull. 
Amer. Math. Soc.  25(2):403-412, October . 
Here is the paper where the authors announce their solution to this celebrated conjec -
ture. It is a good paper to have a look at, since the first portion can be read without any 
special background. 

Morton, H . 1986 . Seifer t circle s an d kno t polynomials . Proc.  Cambridge  Phil. 
Soc. 99:107-109. 
Relates braid index to the exponents of the HOMFLY polynomial. See also (Franks and 
Williams, 1987). 

Murasugi, K. 1987. Jones polynomials an d classica l conjectures i n knot theory . 
Topology 26:187-194. 
Proves that the minimal crossing number of an alternating link occurs in a reduced al-
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ternating projection. See (Thistlethwaite, 1987) and (Kauffman , 1988 ) also. Also shows 
that alternating knots with odd crossing number must be chiral. 

Thistlethwaite, M. 1987 . A spannin g tre e expansio n fo r th e Jones polynomial . 
Topology 26:297-309. 

See previous reference. 

Chapter 7 

Baxter, R. J. 1982. Exactly Solved  Models in Statistical Mechanics. New York : Aca-
demic Press . 
A seminal book in the development of the connections between knot theory and statis-
tical mechanics. Here, the author solve s the Ising model by utilizing the Yang-Baxter 
equation. A good technical reference fo r the detailed mathematics of the relevant sta-
tistical mechanics. 

Dietrich-Buchecker, C , an d J.- R Sauvage . 1989 . A syntheti c molecula r trefoi l 
knot. Angew. Chem.  28(2):189-192. 

This is the announcement of the first successful synthesis of a knotted molecule. 

Flapan, E. 1990. Topological techniques to detect chirality . In New Developments 
in Molecular Chirality, edited by P. G. Mezey: 209-239. Amsterdam: Kluwer. 1990. 

A nice readable survey on topological methods for determining chirality, written for an 
audience of nonmathematicians. 

Jones, V. 1990. Knot theory an d statistica l mechanics . Sci.  Amer. 263(5):98-103 , 
November. 

A readable accoun t o f the relationship between knot s an d statistica l mechanics fro m 
the originator of the connection. 

Jones, V. 1989. On kno t invariant s relate d t o some statistica l mechanica l mod -
els. Pac.}. Math.  137(2):311-334 . 

This paper goe s into some depth i n explaining th e connections between kno t invari -
ants an d statistica l mechanica l models , including verte x models , Potts-type models , 
and IRF models. Although relatively technical , it fills in much of the material that we 
did not cover in Section 7.4. 

King, R . B. , an d D . H . Rouvra y Editors . 1987 . Graph  Theory  and  Topology  in 
Chemistry, Studies  in  Physical  and Theoretical  Chemistry 51.  New York : Elsevier . 

A compendium o f interesting articles . Particularly relevan t article s include E. Flapan, 
Chirality o f non-standardl y embedde d Mobiu s ladders ; J. Simon , A  topologica l ap -
proach t o the stereochemistr y o f nonrigid molecules ; D. W. Summers, Knots, macro-
molecules an d chemica l dynamics ; an d D . M . Walba , Topologica l stereochemistry : 
Knot theory of molecular graphs. 

Pohl, W. F. 1980. DNA and differentia l geometry . Math. Intell.  3:20-27 . 

This paper discusse s the results of White and Fulle r on modeling DNA with ribbons. 
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Simon, J. 1986. Topological chirality of certain molecules. Topology 25(2):229-235. 

Herein lies the proof that Mobius ladders with four or more rungs are always topologi-
cally chiral (they cannot be deformed to their mirror images). 

Sumners, D. W. 1990. Untangling DNA. Math. Intell.  12(3):71-80 . 

A well-written introduction to knot theory as applied to DNA. Highly recommended . 

Sumners, D. W., Editor. 1993. New Scientific  Applications of Geometry and Topology. 
Proceedings of Symposia on Applied Mathematics,  Vol . 45 American Mathematica l 
Society. 

This is the proceedings fro m a  specia l shor t cours e held a t a n America n Mathemat -
ical Societ y Meetin g i n 1992 . It contain s fascinatin g article s b y Nichola s Cozzarelli , 
Louis Kauffman, Jonathan Simon, Dewitt Sumners, James White, and Stuart Whittington. 

Walba, D . M. 1985 . Topological stereochemistry . Tetrahedron  41(16):3161-3212 . 

An encyclopedic article on the connections between knot theory and chemistry. An in-
valuable reference, leaning toward the chemists. 

Wasserman, S. , J. Dungan , an d N . Cozzarelli . 1985 . Discovery o f a  predicte d 
DNA kno t substantiate s a  mode l fo r site-specifi c recombination . Science 
229:171-174, July. 
Here are the first electron microscope pictures of knotted DNA. 

White, J. 1969. Self-linking an d th e Gauss integra l in higher dimensions . Amer. 
f. Math.  XCL693-728 . 
The geometry of ribbons in space. 

Chapter 8 

Appel, K., and W . Haken. 1977 . See references fo r Chapter 1 . 

Conway, J. H., and C . McA. Gordon. 1983 . Knots and link s in spatial graphs . J. 
Graph Theory 7:445-453. 
This articl e i s th e basi s fo r Section s 8. 1 an d 8.2 . Thi s wa s th e firs t articl e i n whic h 
graphs were shown to be intrinsically knotted or intrinsically linked. 

Howards, H. , L . Klein , J . MacEachern , J . Mynttinen , J . Polito , an d J . Terilla . 
1991. Links in spatial embeddings o f graphs. Preprint, September . 

This articl e i s an investigatio n int o intrinsi c linkin g b y si x undergraduate s workin g 
with me in the summer of 1991. They prove numerous interesting results about intrin-
sic linking. 

Kauffman, L . 1989. Invariants o f graphs i n three-space . Trans.  Amer. Math.  Soc. 
311(2)1697-710, February. 
The autho r associate s collection s o f knot s an d link s t o graph s i n orde r t o obtai n in -
variants for the isotopy type of an embedded graph in three-space. Particularly readable. 
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. 1983 . Formal kno t theory . I n Mathematical  Notes,  30 . Princeton , N.J. : 
Princeton Univ. Press. 
This book describes the Arf invariant very well. It also set the groundwork for Kauff -
man's subsequen t wor k o n th e ne w polynomials , which appeare d shortly  afte r thi s 
book was published. 

Negami, S . 1991 . Ramsey theorem s fo r knots , links an d spatia l graphs . Trans. 
Amer. Math. Soc.  324(2)527-541. 

This paper prove s tha t give n an y knot,  ther e i s a  positive intege r n  suc h tha t ANY 
straight-line embedding of the complete graph Kn contains that knot. The author also 
looks at the relationship between the stick number of a knot and the crossing number 
of that knot. 

Robertson, N. , P . D. Seymour , an d R . Thomas . 1993 . Linkless embedding s o f 
graphs in 3-space. Bull.  Amer. Math. Soc.  28(l):84-89. 
The author s announc e th e solutio n t o th e questio n o f determinin g exactl y whic h 
graphs have the property that they always contain a link, no matter how they are em-
bedded in three-space. 

Shimabara, M. 1988. Knots in certain spatial graphs. Tokyo J. Math., 11(2):405~413. 
This paper proves that K5̂  is an intrinsically knotted graph. 

Chapter 9 

Cipra, B . A. 1988 . To have and have knot: when are  two knots  alike?,  Science, 241 , 
1291-1292. 
A very readable account of the Gordon-Luecke result that distinct knots have distinc t 
complements. 

Cornish, C . and Weeks , J. 1998 . Measuring th e Shap e o f th e Universe , Notices 
of the American Mathematical  Society,  Dec. 1998,1463-1471. 

The author s describ e how th e variation i n the cosmi c background radiatio n may  b e 
used to determine the topological shape of the 3-dimensional spatial universe. 
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Corrections to the 
2004 AMS Printing 

On page 109, the lower left dotted arc in the right-hand figure in Figure 
5.5 should be removed. 

On page 139 , the last full sentenc e should be replaced with: We call 
a projectio n o f a  link a n almos t alternatin g projectio n i f on e crossin g 
change makes it alternating. W e call a link an almost alternating link if 
it has an almost alternating projection and it does not have an alternat-
ing projection. 

On page 154 , after Exercis e 6.6*, the sentence 'The Jones polynomi-
al../' shoul d b e replace d with : Th e origina l Jone s polynomia l i s 
obtained from X(L ) b y replacing each A in the polynomial with t~l/4. The 
resulting polynomia l wit h variabl e t  i s exactl y th e polynomia l tha t 
Jones firs t cam e up wit h i n 1984 . We denote thi s polynomial by V(L), 
and sometime s V{t),  when th e link involved i s clear. How good i s the 
Jones polynomial (o r equivalently the X polynomial) a t distinguishin g 
knots? Ever y prim e kno t o f 9  or fewe r crossing s ha s a  distinc t Jone s 
polynomial. So we can distinguish between them all. 

"Knots an d Links" , mentioned o n th e bottom o f page s 280-290 , is 
now published by the AMS. 
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